Xoc.sevsample function

Likelihood-Ratio-Test Statistics: Several Sample Overdispersion Test Comparison

Likelihood-Ratio-Test Statistics: Several Sample Overdispersion Test Comparison

This routine provides the value of the likelihood-ratio-test statistic and the corresponding p-value to assess whether the overdispersion observed in multiple groups of microbiome samples are equal.

Xoc.sevsample(group.data, epsilon = 10^(-4))

Arguments

  • group.data: A list where each element is a matrix of taxonomic counts(columns) for each sample(rows). (See Notes 1 and 2 in details)
  • epsilon: Convergence tolerance. To terminate, the difference between two succeeding log-likelihoods must be smaller than epsilon. Default value is 10^(-4).

Returns

A list containing the Xoc statistics and p-value.

Details

To assess whether the over dispersion parameter vectors θm\theta_{\mathrm{m}} observed in JJ groups of microbiome samples are equal to each other, the following hypothesis Ho:θ1==θm==θJ=θo\mathrm{H}_{\mathrm{o}}: \theta_{\mathrm{1}} = \cdots =\theta_{\mathrm{m}} =\cdots=\theta_{\mathrm{J}}=\theta_{\mathrm{o}} versus Ha:θmθo,m=1,,J\mathrm{H}_{\mathrm{a}}: \theta_{\mathrm{m}} \ne \theta_{\mathrm{o}}, m=1, \ldots, J

can be tested. In particular, the likelihood-ratio test statistic is used (Tvedebrink, 2010), which is given by,

xoc=2log{L(θo;X1,,XJ)L(θ1,,θJ;X1,,XJ)}. x_{\mathrm{oc}}=-2 \log\left\{\frac{L\left(\theta_{\mathrm{o}}; \mathbf{X}_{\mathrm{1}},\ldots, \mathbf{X}_{\mathrm{J}} \right)}{L\left(\theta_{\mathrm{1}},\ldots, \theta_{\mathrm{J}}; \mathbf{X}_{\mathrm{1}},\ldots, \mathbf{X}_{\mathrm{J}} \right)}\right\} .

The asymptotic null distribution of xocx_{\mathrm{oc}} follows a Chi-square with degrees of freedom equal to (J-1) (Wilks, 1938).

  1. Note 1: The matrices in group.data must contain the same taxa, in the same order.
  2. Note 2: Each taxa should be present in at least 1 sample, a column with all 0's may result in errors and/or invalid results.

References

Tvedebrink, T. (2010). Overdispersion in allelic counts and theta-correction in forensic genetics. Theor Popul Biol 78, 200-210.

Wilks, S. S. (1938). The Large-Sample Distribution of the Likelihood Ratio for Testing Composite Hypotheses. The Annals of Mathematical Statistics 9, 60-62.

Examples

data(saliva) data(tonsils) ### Combine the data sets into a single list group.data <- list(saliva, tonsils) ## Not run: xoc <- Xoc.sevsample(group.data) xoc ## End(Not run)
  • Maintainer: Berkley Shands
  • License: Apache License (== 2.0)
  • Last published: 2019-08-31

Useful links