Calculate the conditional per-cluster mean of each observation
Calculate the conditional per-cluster mean of each observation
This function is used to calculate the conditional per-cluster mean expression for all observations. This value corresponds to μ=(μijlk)=(w^iλ^jk)
for the PMM-I model and μ=(μijlk)=(w^isjlλ^jk)
for the PMM-II model.
PoisMixMean(y, g, conds, s, lambda)
Arguments
y: (n x q) matrix of observed counts for n observations and q variables
g: Number of clusters
conds: Vector of length q defining the condition (treatment group) for each variable (column) in y
s: Estimate of normalized per-variable library size
lambda: (d x g) matrix containing the current estimate of lambda, where d is the number of conditions (treatment groups) and g is the number of clusters
Returns
A list of length g containing the (n x q) matrices of mean expression for all observations, conditioned on each of the g clusters
References
Rau, A., Maugis-Rabusseau, C., Martin-Magniette, M.-L., Celeux G. (2015). Co-expression analysis of high-throughput transcriptome sequencing data with Poisson mixture models. Bioinformatics, 31(9):1420-1427.
Rau, A., Celeux, G., Martin-Magniette, M.-L., Maugis-Rabusseau, C. (2011). Clustering high-throughput sequencing data with Poisson mixture models. Inria Research Report 7786. Available at https://inria.hal.science/inria-00638082.
Author(s)
Andrea Rau
See Also
PoisMixClus for Poisson mixture model estimation and model selection
Examples
set.seed(12345)## Simulate data as shown in Rau et al. (2011)## Library size setting "A", high cluster separation## n = 200 observationssimulate <- PoisMixSim(n =200, libsize ="A", separation ="high")y <- simulate$y
conds <- simulate$conditions
s <- colSums(y)/ sum(y)## TC estimate of lib size## Run the PMM-II model for g = 3## "TC" library size estimate, EM algorithmrun <- PoisMixClus(y, g =3, norm ="TC", conds = conds)pi.est <- run$pi
lambda.est <- run$lambda
## Calculate the per-cluster mean for each observationmeans <- PoisMixMean(y, g =3, conds, s, lambda.est)