hyperbChangePars function

Change Parameterizations of the Hyperbolic Distribution

Change Parameterizations of the Hyperbolic Distribution

This function interchanges between the following 4 parameterizations of the hyperbolic distribution:

  1. pi,zeta,delta,mupi, zeta, delta, mu

  2. alpha,beta,delta,mualpha, beta, delta, mu

  3. phi,gamma,delta,muphi, gamma, delta, mu

  4. xi,chi,delta,muxi, chi, delta, mu

The first three are given in Barndorff-Nielsen and (1983), and the fourth in Prause (1999)

hyperbChangePars(from, to, Theta, noNames = FALSE)

Arguments

  • from: The set of parameters to change from.
  • to: The set of parameters to change to.
  • Theta: "from" parameter vector consisting of 4 numerical elements.
  • noNames: Logical. When TRUE, suppresses the parameter names in the output.

Details

In the 4 parameterizations, the following must be positive:

  1. zeta,deltazeta, delta

  2. alpha,deltaalpha, delta

  3. phi,gamma,deltaphi, gamma, delta

  4. xi,deltaxi, delta

Furthermore, note that in the second parameterization alphaalpha must be greater than the absolute value of betabeta, while in the fourth parameterization, xixi

must be less than one, and the absolute value of chichi must be less than xixi.

Returns

A numerical vector of length 4 representing Theta in the to parameterization.

References

Barndorff-Nielsen, O. and , P. (1983). Hyperbolic distributions. In Encyclopedia of Statistical Sciences, eds., Johnson, N. L., Kotz, S. and Read, C. B., Vol. 3, pp. 700--707. New York: Wiley.

Prause, K. (1999) The generalized hyperbolic models: Estimation, financial derivatives and risk measurement. PhD Thesis, Mathematics Faculty, University of Freiburg.

Author(s)

David Scott d.scott@auckland.ac.nz , Jennifer Tso, Richard Trendall

See Also

dhyperb

Examples

Theta1 <- c(-2,1,3,0) # Parameterization 1 Theta2 <- hyperbChangePars(1, 2, Theta1) # Convert to parameterization 2 Theta2 # Parameterization 2 hyperbChangePars(2, 1, as.numeric(Theta2)) # Convert back to parameterization 1