momIntegrated function

Moments Using Integration

Moments Using Integration

Calculates moments and absolute moments about a given location for the generalized hyperbolic and related distributions.

momIntegrated(densFn, order, param = NULL, about = 0, absolute = FALSE)

Arguments

  • densFn: Character. The name of the density function whose moments are to be calculated. See Details .
  • order: Numeric. The order of the moment or absolute moment to be calculated.
  • param: Numeric. A vector giving the parameter values for the distribution specified by densFn. If no param values are specified, then the default parameter values of each distribution are used instead.
  • about: Numeric. The point about which the moment is to be calculated.
  • absolute: Logical. Whether absolute moments or ordinary moments are to be calculated. Default is FALSE.

Details

Denote the density function by ff. Then if order=k=k and about=a=a, momIntegrated calculates

(xa)kf(x)dx \int_{-\infty}^\infty (x - a)^k f(x) dx%integral_{-infinity}^infinity (x - a)^k f(x) dx

when absolute = FALSE and

xakf(x)dx \int_{-\infty}^\infty |x - a|^k f(x) dx%integral_{-infinity}^infinity |x - a|^k f(x) dx

when absolute = TRUE.

Only certain density functions are permitted.

When densFn="ghyp" or "generalized hyperbolic" the density used is dghyp. The default value for param is c(1,1,0,1,0).

When densFn="hyperb" or "hyperbolic" the density used is dhyperb. The default value for param is c(0,1,1,0).

When densFn="gig" or "generalized inverse gaussian" the density used is dgig. The default value for param is c(1,1,1).

When densFn="gamma" the density used is dgamma. The default value for param is c(1,1).

When densFn="invgamma" or "inverse gamma" the density used is the density of the inverse gamma distribution given by

f(x)=uαeuxΓ(α), f(x) = \frac{u^\alpha e^{-u}}{x \Gamma(\alpha)}, %\quad u = \theta/x%f(x) = u^alpha exp(-u)/(x Gamma(alpha)), u = theta/x

for x>0x > 0, alpha>0alpha > 0 and theta>0theta > 0. The parameter vector param = c(shape,rate) where shape =alpha=alpha and rate=1/theta=1/theta. The default value for param is c(-1,1).

Returns

The value of the integral as specified in Details .

Author(s)

David Scott d.scott@auckland.ac.nz , Christine Yang Dong c.dong@auckland.ac.nz

See Also

dghyp, dhyperb, dgamma, dgig

Examples

### Calculate the mean of a generalized hyperbolic distribution ### Compare the use of integration and the formula for the mean m1 <- momIntegrated("ghyp", param = c(1/2,3,1,1,0), order = 1, about = 0) m1 ghypMean(c(1/2,3,1,1,0)) ### The first moment about the mean should be zero momIntegrated("ghyp", order = 1, param = c(1/2,3,1,1,0), about = m1) ### The variance can be calculated from the raw moments m2 <- momIntegrated("ghyp", order = 2, param = c(1/2,3,1,1,0), about = 0) m2 m2 - m1^2 ### Compare with direct calculation using integration momIntegrated("ghyp", order = 2, param = c(1/2,3,1,1,0), about = m1) momIntegrated("generalized hyperbolic", param = c(1/2,3,1,1,0), order = 2, about = m1) ### Compare with use of the formula for the variance ghypVar(c(1/2,3,1,1,0))