ICAOD1.0.1 package

Optimal Designs for Nonlinear Statistical Models by Imperialist Competitive Algorithm (ICA)

bayes

Bayesian D-Optimal Designs

bayes.update

Updating an Object of Class minimax

bayescomp

Bayesian Compound DP-Optimal Designs

beff

Calculates Relative Efficiency for Bayesian Optimal Designs

crt.bayes.control

Returns Control Parameters for Approximating Bayesian Criteria

crt.minimax.control

Returns Control Parameters for Optimizing Minimax Criteria Over The Pa...

FIM_2par_exp_censor1

Fisher Information Matrix for a 2-Parameter Cox Proportional-Hazards M...

FIM_2par_exp_censor2

Fisher Information Matrix for a 2-Parameter Cox Proportional-Hazards M...

FIM_3par_exp_censor1

Fisher Information Matrix for a 3-Parameter Cox Proportional-Hazards M...

FIM_3par_exp_censor2

Fisher Information Matrix for a 3-Parameter Cox Proportional-Hazards M...

FIM_exp_2par

Fisher Information Matrix for the 2-Parameter Exponential Model

FIM_kinetics_alcohol

Fisher Information Matrix for the Alcohol-Kinetics Model

FIM_logistic

Fisher Information Matrix for the 2-Parameter Logistic (2PL) Model

FIM_logistic_2pred

Fisher Information Matrix for the Logistic Model with Two Predictors

FIM_logistic_4par

Fisher Information Matrix for the 4-Parameter Logistic Model

FIM_loglin

Fisher Information Matrix for the Mixed Inhibition Model

FIM_mixed_inhibition

Fisher Information Matrix for the Mixed Inhibition Model.

FIM_power_logistic

Fisher Information Matrix for the Power Logistic Model

FIM_sig_emax

Fisher Information Matrix for the Sigmoid Emax Model

ICA.control

Returns ICA Control Optimization Parameters

ICAOD

ICAOD: Finding Optimal Designs for Nonlinear Models Using Imperialist ...

leff

Calculates Relative Efficiency for Locally Optimal Designs

locally

Locally D-Optimal Designs

locallycomp

Locally DP-Optimal Designs

meff

Calculates Relative Efficiency for Minimax Optimal Designs

minimax

Minimax and Standardized Maximin D-Optimal Designs

multiple

Locally Multiple Objective Optimal Designs for the 4-Parameter Hill Mo...

normal

Assumes A Multivariate Normal Prior Distribution for The Model Paramet...

plot.minimax

Plotting minimax Objects

print.minimax

Printing minimax Objects

print.sensminimax

Printing sensminimax Objects

robust

Robust D-Optimal Designs

sens.bayes.control

Returns Control Parameters for Approximating The Integrals In The Baye...

sens.control

Returns Control Parameters To Find Maximum of The Sensitivity (Derivat...

sens.minimax.control

Returns Control Parameters for Verifying General Equivalence Theorem F...

sensbayes

Verifying Optimality of Bayesian D-optimal Designs

sensbayescomp

Verifying Optimality of Bayesian Compound DP-optimal Designs

senslocally

Verifying Optimality of The Locally D-optimal Designs

senslocallycomp

Verifying Optimality of The Locally DP-optimal Designs

sensminimax

Verifying Optimality of The Minimax and Standardized maximin D-optimal...

sensmultiple

Verifying Optimality of The Multiple Objective Designs for The 4-Param...

sensrobust

Verifying Optimality of The Robust Designs

skewnormal

Assumes A Multivariate Skewed Normal Prior Distribution for The Model ...

student

Multivariate Student's t Prior Distribution for Model Parameters

uniform

Assume A Multivariate Uniform Prior Distribution for The Model Paramet...

update.minimax

Updating an Object of Class minimax

Finds optimal designs for nonlinear models using a metaheuristic algorithm called Imperialist Competitive Algorithm (ICA). See, for details, Masoudi et al. (2017) <doi:10.1016/j.csda.2016.06.014> and Masoudi et al. (2019) <doi:10.1080/10618600.2019.1601097>.

  • Maintainer: Ehsan Masoudi
  • License: GPL (>= 2)
  • Last published: 2020-10-11