fit_gen_model_unisamp function

Fit Generative Model Without Sample-Specific Effects

Fit Generative Model Without Sample-Specific Effects

A function to fit a generative model to a mutation dataset that does not incorporate sample-specific effects. Otherwise acts similarly to the function fit_gen_model().

NOTE: fits produced by this model will not be compatible with predictive model fits downstream - it is purely for comparing with full models.

fit_gen_model_unisamp( gene_lengths, matrix = NULL, sample_list = NULL, gene_list = NULL, mut_types_list = NULL, col_names = NULL, table = NULL, nlambda = 100, n_folds = 10, maxit = 1e+09, seed_id = 1234, progress = FALSE )

Arguments

  • gene_lengths: (dataframe) A table with two columns: Hugo_Symbol and max_cds, providing the lengths of the genes to be modelled.
  • matrix: (Matrix::sparseMatrix) A mutation matrix, such as produced by the function get_table_from_maf().
  • sample_list: (character) The set of samples to be modelled.
  • gene_list: (character) The set of genes to be modelled.
  • mut_types_list: (character) The set of mutation types to be modelled.
  • col_names: (character) The column names of the 'matrix' parameter.
  • table: (list) Optional parameter combining matrix, sample_list, gene_list, mut_types_list, col_names, as is produced by the function get_tables().
  • nlambda: (numeric) The length of the vector of penalty weights, passed to the function glmnet::glmnet().
  • n_folds: (numeric) The number of cross-validation folds to employ.
  • maxit: (numeric) Technical parameter passed to the function glmnet::glmnet().
  • seed_id: (numeric) Input value for the function set.seed().
  • progress: (logical) Show progress bars and text.

Returns

A list comprising three objects:

  • An object 'fit', a fitted glmnet model.
  • A table 'dev', giving average deviances for each regularisation penalty factor and cross-validation fold.
  • An integer 's_min', the index of the regularsisation penalty minimising cross-validation deviance.
  • A list 'names', containing the sample, gene, and mutation type information of the training data.

Examples

example_gen_model_unisamp <- fit_gen_model_unisamp(example_maf_data$gene_lengths, table = example_tables$train) print(names(example_gen_model))
  • Maintainer: Jacob R. Bradley
  • License: MIT + file LICENSE
  • Last published: 2021-11-15

Useful links