Fit Generative Model Without Sample-Specific Effects
A function to fit a generative model to a mutation dataset that does not incorporate sample-specific effects. Otherwise acts similarly to the function fit_gen_model().
NOTE: fits produced by this model will not be compatible with predictive model fits downstream - it is purely for comparing with full models.
fit_gen_model_unisamp( gene_lengths, matrix = NULL, sample_list = NULL, gene_list = NULL, mut_types_list = NULL, col_names = NULL, table = NULL, nlambda = 100, n_folds = 10, maxit = 1e+09, seed_id = 1234, progress = FALSE )
gene_lengths
: (dataframe) A table with two columns: Hugo_Symbol and max_cds, providing the lengths of the genes to be modelled.matrix
: (Matrix::sparseMatrix) A mutation matrix, such as produced by the function get_table_from_maf().sample_list
: (character) The set of samples to be modelled.gene_list
: (character) The set of genes to be modelled.mut_types_list
: (character) The set of mutation types to be modelled.col_names
: (character) The column names of the 'matrix' parameter.table
: (list) Optional parameter combining matrix, sample_list, gene_list, mut_types_list, col_names, as is produced by the function get_tables().nlambda
: (numeric) The length of the vector of penalty weights, passed to the function glmnet::glmnet().n_folds
: (numeric) The number of cross-validation folds to employ.maxit
: (numeric) Technical parameter passed to the function glmnet::glmnet().seed_id
: (numeric) Input value for the function set.seed().progress
: (logical) Show progress bars and text.A list comprising three objects:
example_gen_model_unisamp <- fit_gen_model_unisamp(example_maf_data$gene_lengths, table = example_tables$train) print(names(example_gen_model))
Useful links