pred_intervals function

Produce Error Bounds for Predictions

Produce Error Bounds for Predictions

A function to produce a confidence region for a linear predictor. In upcoming versions will (hopefully) be greatly simplified.

pred_intervals( predictions, pred_model, gen_model, training_matrix, gene_lengths, biomarker_values, alpha = 0.1, range_factor = 1.1, s = NULL, max_panel_length = NULL, biomarker = "TMB", marker_mut_types = c("NS", "I"), model = "Refitted T" )

Arguments

  • predictions: (list) A predictions object, as produced by get_predictions().
  • pred_model: (list) A predictive model, as produced by pred_first_fit(), pred_refit_panel() or pred_refit_range().
  • gen_model: (list) A generative model, as produce by fit_gen_model
  • training_matrix: (sparse matrix) A training matrix, as produced by get_tables()matrixorgettablefrommaf()matrix or get_table_from_maf()matrix.
  • gene_lengths: (data frame) A data frame with columns 'Hugo_Symbol' and 'max_cds'. See example_maf_data$gene_lengths, or ensembl_gene_lengths for examples.
  • biomarker_values: (data frame) A data frame containing the true values of the biomarker in question.
  • alpha: (numeric) Confidence level for error bounds.
  • range_factor: (numeric) Value specifying how far beyond the range of max(biomarker) to plot confidence region.
  • s: (numeric) If input predictions are for a range of panels, s chooses which panel (column in a pred_fit object) to produce predictions for.
  • max_panel_length: (numeric) Select panel by maximum length.
  • biomarker: (character) Which biomarker is being predicted.
  • marker_mut_types: (character) If biomarker is not one of "TMB" or "TIB", then this is required to specify which mutation type groups constitute the biomarker.
  • model: (character) The model (must be based on a linear estimator) for which prediction intervals are being generated.

Returns

A list with two entries:

  • prediction_intervals:
  • confidence_region:

Examples

example_intervals <- pred_intervals(predictions = get_predictions(example_refit_range, new_data = example_tables$val), pred_model = example_refit_range, biomarker_values = example_tmb_tables$val, gen_model = example_gen_model, training_matrix = example_tables$train$matrix, max_panel_length = 15000, gene_lengths = example_maf_data$gene_lengths) example_confidence_plot <- ggplot2::ggplot() + ggplot2::geom_point(data = example_intervals$prediction_intervals, ggplot2::aes(x = true_value, y = estimated_value)) + ggplot2::geom_ribbon(data = example_intervals$confidence_region, ggplot2::aes(x = x, ymin = y_lower, ymax = y_upper), fill = "red", alpha = 0.2) + ggplot2::geom_line(data = example_intervals$confidence_region, ggplot2::aes(x = x, y = y), linetype = 2) + ggplot2::scale_x_log10() + ggplot2::scale_y_log10() plot(example_confidence_plot)
  • Maintainer: Jacob R. Bradley
  • License: MIT + file LICENSE
  • Last published: 2021-11-15

Useful links