IMIFA2.2.0 package

Infinite Mixtures of Infinite Factor Analysers and Related Models

bnpControl

Control settings for the Bayesian Nonparametric priors for infinite mi...

G_moments

1st & 2nd Moments of the Pitman-Yor / Dirichlet Processes

G_priorDensity

Plot Pitman-Yor / Dirichlet Process Priors

get_IMIFA_results

Extract results, conduct posterior inference and compute performance m...

gumbel_max

Simulate Cluster Labels from Unnormalised Log-Probabilities using the ...

heat_legend

Add a colour key legend to heatmap plots

IMIFA-package

IMIFA: Infinite Mixtures of Infinite Factor Analysers and Related Mode...

IMIFA_news

Show the NEWS file

is.cols

Check for Valid Colours

is.posi_def

Check Positive-(Semi)definiteness of a matrix

Ledermann

Ledermann Bound

ltrgamma

Left Truncated Gamma Distributions

mat2cols

Convert a numeric matrix to colours

mcmc_IMIFA

Adaptive Gibbs Sampler for Nonparametric Model-based Clustering using ...

MGP_check

Check the validity of Multiplicative Gamma Process (MGP) hyperparamete...

mgpControl

Control settings for the MGP prior and AGS for infinite factor models

mixfaControl

Control settings for the IMIFA family of factor analytic mixtures

pareto_scale

Pareto Scaling

PGMM_dfree

Estimate the Number of Free Parameters in Finite Factor Analytic Mixtu...

plot.Results_IMIFA

Plotting output and parameters of inferential interest for IMIFA and r...

plot_cols

Plots a matrix of colours

post_conf_mat

Posterior Confusion Matrix

Procrustes

Procrustes Transformation

psi_hyper

Find sensible inverse gamma hyperparameters for variance/uniqueness pa...

rDirichlet

Simulate Mixing Proportions from a Dirichlet Distribution

scores_MAP

Decompose factor scores by cluster

shift_GA

Moment Matching Parameters of Shifted Gamma Distributions

show_digit

Show image of grayscale grid

show_IMIFA_digit

Plot the posterior mean image

sim_IMIFA

Simulate Data from a Mixture of Factor Analysers Structure

storeControl

Set storage values for use with the IMIFA family of models

Zsimilarity

Summarise MCMC samples of clustering labels with a similarity matrix a...

Provides flexible Bayesian estimation of Infinite Mixtures of Infinite Factor Analysers and related models, for nonparametrically clustering high-dimensional data, introduced by Murphy et al. (2020) <doi:10.1214/19-BA1179>. The IMIFA model conducts Bayesian nonparametric model-based clustering with factor analytic covariance structures without recourse to model selection criteria to choose the number of clusters or cluster-specific latent factors, mostly via efficient Gibbs updates. Model-specific diagnostic tools are also provided, as well as many options for plotting results, conducting posterior inference on parameters of interest, posterior predictive checking, and quantifying uncertainty.

  • Maintainer: Keefe Murphy
  • License: GPL (>= 3)
  • Last published: 2023-12-12