stackplot function

plot grouped CSMF from a "insilico" object

plot grouped CSMF from a "insilico" object

Produce bar plot of the CSMFs for a fitted "insilico" object in broader groups.

stackplot( x, grouping = NULL, type = c("stack", "dodge")[1], order.group = NULL, order.sub = NULL, err = TRUE, CI = 0.95, sample.size.print = FALSE, xlab = "Group", ylab = "CSMF", ylim = NULL, title = "CSMF by broader cause categories", horiz = FALSE, angle = 60, err_width = 0.4, err_size = 0.6, point_size = 2, border = "black", bw = FALSE, ... )

Arguments

  • x: fitted "insilico" object
  • grouping: C by 2 matrix of grouping rule. If set to NULL, make it default.
  • type: type of the plot to make
  • order.group: list of grouped categories. If set to NULL, make it default.
  • order.sub: Specification of the order of sub-populations to plot
  • err: indicator of inclusion of error bars
  • CI: confidence interval for error bars.
  • sample.size.print: Logical indicator for printing also the sample size for each sub-population labels.
  • xlab: Labels for the causes.
  • ylab: Labels for the CSMF values.
  • ylim: Range of y-axis.
  • title: Title of the plot.
  • horiz: Logical indicator indicating if the bars are plotted horizontally.
  • angle: Angle of rotation for the texts on x axis when horiz is set to FALSE
  • err_width: Size of the error bars.
  • err_size: Thickness of the error bar lines.
  • point_size: Size of the points.
  • border: The color for the border of the bars.
  • bw: Logical indicator for setting the theme of the plots to be black and white.
  • ...: Not used.

Examples

## Not run: data(RandomVA1) ## ## Scenario 1: without sub-population specification ## fit1<- insilico(RandomVA1, subpop = NULL, Nsim = 1000, burnin = 500, thin = 10 , seed = 1, auto.length = FALSE) # stack bar plot for grouped causes # the default grouping could be seen from data(SampleCategory) stackplot(fit1, type = "dodge", xlab = "") ## ## Scenario 2: with sub-population specification ## data(RandomVA2) fit2<- insilico(RandomVA2, subpop = list("sex"), Nsim = 1000, burnin = 500, thin = 10 , seed = 1, auto.length = FALSE) stackplot(fit2, type = "stack", angle = 0) stackplot(fit2, type = "dodge", angle = 0) # Change the default grouping by separating TB from HIV data(SampleCategory) SampleCategory[c(3, 9), ] SampleCategory[3, 2] <- "HIV/AIDS" SampleCategory[9, 2] <- "TB" stackplot(fit2, type = "stack", grouping = SampleCategory, sample.size.print = TRUE, angle = 0) stackplot(fit2, type = "dodge", grouping = SampleCategory, sample.size.print = TRUE, angle = 0) # change the order of display for sub-population and cause groups groups <- c("HIV/AIDS", "TB", "Communicable", "NCD", "External", "Maternal", "causes specific to infancy") subpops <- c("Women", "Men") stackplot(fit2, type = "stack", grouping = SampleCategory, order.group = groups, order.sub = subpops, sample.size.print = TRUE, angle = 0) ## End(Not run)

References

Tyler H. McCormick, Zehang R. Li, Clara Calvert, Amelia C. Crampin, Kathleen Kahn and Samuel J. Clark Probabilistic cause-of-death assignment using verbal autopsies, Journal of the American Statistical Association (2016), 111(515):1036-1049.

See Also

insilico, summary.insilico

Author(s)

Zehang Li, Tyler McCormick, Sam Clark

Maintainer: Zehang Li lizehang@uw.edu