anova function

Anova Method for Fitted Joint Models

Anova Method for Fitted Joint Models

Comparison of (non)nested joint models using information criteria.

## S3 method for class 'JMbayes' anova(object, ...)

Arguments

  • object, ...``: objects inheriting from class JMbayes.

Returns

A data frame with rows the different models, and columns the number or parameters in each model, the the log pseudo marginal likelihood value, the deviance information criterion value, and the pD value.

Author(s)

Dimitris Rizopoulos d.rizopoulos@erasmusmc.nl

See Also

jointModelBayes

Examples

## Not run: # composite event indicator pbc2$status2 <- as.numeric(pbc2$status != "alive") pbc2.id$status2 <- as.numeric(pbc2.id$status != "alive") # linear mixed model with natural cubic splines for the time # effect lmeFit.pbc1 <- lme(log(serBilir) ~ ns(year, 2), data = pbc2, random = ~ ns(year, 2) | id, method = "ML") # Cox regression model with baseline covariates coxFit.pbc1 <- coxph(Surv(years, status2) ~ drug * age, data = pbc2.id, x = TRUE) # the standard joint model fit with only the m_i(t) term in # the linear predictor of the survival submodel jointFit.pbc1 <- jointModelBayes(lmeFit.pbc1, coxFit.pbc1, timeVar = "year") # we include the time-dependent slopes term dForm <- list(fixed = ~ 0 + dns(year, 2), random = ~ 0 + dns(year, 2), indFixed = 2:3, indRandom = 2:3) jointFit.pbc2 <- update(jointFit.pbc1, param = "td-both", extraForm = dForm) # we include the cumulative effect of the marker iForm <- list(fixed = ~ 0 + year + ins(year, 2), random = ~ 0 + year + ins(year, 2), indFixed = 1:3, indRandom = 1:3) jointFit.pbc3 <- update(jointFit.pbc1, param = "td-extra", extraForm = iForm) # we compare the three models anova(jointFit.pbc1, jointFit.pbc2, jointFit.pbc3) ## End(Not run)