Rizopoulos, D. (2016). The R package JMbayes for fitting joint models for longitudinal and time-to-event data using MCMC. Journal of Statistical Software 72(7) , 1--45. doi:10.18637/jss.v072.i07.
Rizopoulos, D., Hatfield, L., Carlin, B. and Takkenberg, J. (2014). Combining dynamic predictions from joint models for longitudinal and time-to-event data using Bayesian model averaging. Journal of the American Statistical Association
109 , 1385--1397.
Examples
## Not run:# we construct the composite event indicator (transplantation or death)pbc2$status2 <- as.numeric(pbc2$status !="alive")pbc2.id$status2 <- as.numeric(pbc2.id$status !="alive")# we fit two joint models using splines for the subject-specific # longitudinal trajectories and a spline-approximated baseline# risk function; the first one with the current value parameterization# and the other with the shared random effects parameterizationlmeFit <- lme(log(serBilir)~ ns(year,2), data = pbc2, random =~ ns(year,2)| id)survFit <- coxph(Surv(years, status2)~ drug, data = pbc2.id, x =TRUE)jointFit1 <- jointModelBayes(lmeFit, survFit, timeVar ="year")jointFit2 <- update(jointFit1, param ="shared-RE")# we compute survival probabilities for Subject 2 with # different weightsND <- pbc2[pbc2$id ==2,]# the data of Subject 2survPreds1 <- survfitJM(jointFit1, newdata = ND, weight =0.4)survPreds2 <- survfitJM(jointFit2, newdata = ND, weight =0.6)survPreds.bma <- bma.combine(survPreds1, survPreds2)survPreds.bma
plot(survPreds.bma)## End(Not run)