L2NewtonThr function

L2NewtonThr - Iterative Thresholding Algorithm based on l2,ql_{2,q} norm with Newton method

L2NewtonThr - Iterative Thresholding Algorithm based on l2,ql_{2,q} norm with Newton method

The function aims to solve l2,ql_{2,q} regularized least squares, where the proximal optimization subproblems will be solved by Newton method.

L2NewtonThr(A, B, X, s, q, maxIter = 200, innMaxIter = 30, innEps = 1e-06)

Arguments

  • A: Gene expression data of transcriptome factors (i.e. feature matrix in machine learning). The dimension of A is m * n.
  • B: Gene expression data of target genes (i.e. observation matrix in machine learning). The dimension of B is m * t.
  • X: Gene expression data of Chromatin immunoprecipitation or other matrix (i.e. initial iterative point in machine learning). The dimension of X is n * t.
  • s: joint sparsity level
  • q: value for l2,ql_{2,q} norm (i.e., 0 < q < 1)
  • maxIter: maximum iteration
  • innMaxIter: maximum iteration in Newton step
  • innEps: criterion to stop inner iteration

Returns

The solution of proximal gradient method with l2,ql_{2,q} regularizer.

Details

The L2NewtonThr function aims to solve the problem:

minAXBF2+λX2,q \min \|AX-B\|_F^2 + \lambda \|X\|_{2,q}

to obtain s-joint sparse solution.

Examples

m <- 256; n <- 1024; t <- 5; maxIter0 <- 50 A0 <- matrix(rnorm(m * n), nrow = m, ncol = n) B0 <- matrix(rnorm(m * t), nrow = m, ncol = t) X0 <- matrix(0, nrow = n, ncol = t) NoA <- norm(A0, '2'); A0 <- A0/NoA; B0 <- B0/NoA res_L2q <- L2NewtonThr(A0, B0, X0, s = 10, q = 0.2, maxIter = maxIter0)

Author(s)

Xinlin Hu thompson-xinlin.hu@connect.polyu.hk

Yaohua Hu mayhhu@szu.edu.cn

  • Maintainer: Xinlin Hu
  • License: GPL (>= 3)
  • Last published: 2022-08-18

Useful links