JointAI1.0.6 package

Joint Analysis and Imputation of Incomplete Data

add_linebreaks

Add line breaks to a linear predictor string

add_samples

Continue sampling from an object of class JointAI

all_vars

Extract names of variables from a (list of) formula(s)

bs

B-Spline Basis for Polynomial Splines

check_formula_list

Check/convert formula to list

check_full_blockdiag

Replace a full with a block-diagonal variance covariance matrix Check ...

check_rd_vcov

Check / create the random effects variance-covariance matrix specifica...

check_rd_vcov_list

First validation for rd_vcov

clean_survname

Convert a survival outcome to a model name

combine_formula_lists

Combine fixed and random effects formulas

combine_formulas

Combine a fixed and random effects formula

default_hyperpars

Get the default values for hyper-parameters

densplot

Plot the posterior density from object of class JointAI

difftime_df

Converts a difftime object to a data.frame

duration_obj

Create a duration object

expand_rd_vcov_full

Expand rd_vcov using variable names in case "full" is used

extract_id

Extract all id variables from a list of random effects formulas

extract_lhs

Extract the left hand side of a formula

extract_state

Return the current state of a 'JointAI' model

get_family

Identify the family from the covariate model type

get_MIdat

Extract multiple imputed datasets from an object of class JointAI

get_missinfo

Obtain a summary of the missing values involved in an object of class ...

get_Mlist

Re-create the full Mlist from a "JointAI" object

get_modeltype

Identify the general model type from the covariate model type

get_nranef

Extract the number of random effects

get_resp_mat

Identify the data matrix containing a given response variable

GR_crit

Gelman-Rubin criterion for convergence

hc_rdslope_info

Get info on the main effects in a random slope structure for a given l...

hc_rdslope_interact

Get info on the interactions with random slopes for a given level and ...

JointAI

JointAI: Joint Analysis and Imputation of Incomplete Data

JointAIObject

Fitted object of class 'JointAI'

list_models

List model details

MC_error

Calculate and plot the Monte Carlo error

md_pattern

Missing data pattern

model_imp

Joint Analysis and Imputation of incomplete data

ns

Generate a Basis Matrix for Natural Cubic Splines

parameters

Parameter names of an JointAI object

paste_coef

Write the coefficient part of a linear predictor

paste_data

Write the data element of a linear predictor

paste_linpred

Write a linear predictor

paste_scale

Create the scaling in a data element of a linear predictor

paste_scaling

Wrap a data element of a linear predictor in scaling syntax

PBC

PBC data

plot.JointAI

Plot an object object inheriting from class 'JointAI'

plot_all

Visualize the distribution of all variables in the dataset

plot_imp_distr

Plot the distribution of observed and imputed values

predDF

Create a new data frame for prediction

predict.JointAI

Predict values from an object of class JointAI

rd_vcov

Extract the random effects variance covariance matrix Returns the post...

reformat_difftime

Set all elements of a difftime object to the same, largest meaningfu...

remove_lhs

Remove the left hand side of a (list of) formula(s)

residuals.JointAI

Extract residuals from an object of class JointAI

set_refcat

Specify reference categories for all categorical covariates in the mod...

sharedParams

Parameters used by several functions in JointAI

split_formula

Split a formula into fixed and random effects parts

split_formula_list

Split a list of formulas into fixed and random effects parts.

sum_duration

Calculate the sum of the computational duration of a JointAI object

summary.JointAI

Summarize the results from an object of class JointAI

Surv

Create a Survival Object

traceplot

Create traceplots for a MCMC sample

Joint analysis and imputation of incomplete data in the Bayesian framework, using (generalized) linear (mixed) models and extensions there of, survival models, or joint models for longitudinal and survival data, as described in Erler, Rizopoulos and Lesaffre (2021) <doi:10.18637/jss.v100.i20>. Incomplete covariates, if present, are automatically imputed. The package performs some preprocessing of the data and creates a 'JAGS' model, which will then automatically be passed to 'JAGS' <https://mcmc-jags.sourceforge.io/> with the help of the package 'rjags'.

  • Maintainer: Nicole S. Erler
  • License: GPL (>= 2)
  • Last published: 2024-04-02