G_delta_alpha function

Heavy tail transformation for Lambert W random variables

Heavy tail transformation for Lambert W random variables

Heavy-tail Lambert W RV transformation: c("Gdelta,alpha(u)=u\nG_{\\delta, \\alpha}(u) = u\n", "exp(fracdelta2(u2)alpha)\\exp(\\frac{\\delta}{2} (u^2)^{\\alpha})"). Reduces to Tukey's h distribution for α=1\alpha = 1 (G_delta) and Gaussian input.

G_delta_alpha(u, delta = 0, alpha = 1) G_delta(u, delta = 0) G_2delta_2alpha(u, delta = c(0, 0), alpha = c(1, 1))

Arguments

  • u: a numeric vector of real values.

  • delta: heavy tail parameter; default delta = 0, which implies G_delta_alpha(u) = u.

  • alpha: exponent in (u2)α(u^2)^{\alpha}; default alpha = 1

    (Tukey's h).

Returns

numeric; same dimension/size as u.

  • Maintainer: Georg M. Goerg
  • License: GPL (>= 2)
  • Last published: 2023-11-30