W_delta function

Inverse transformation for heavy-tail Lambert W RVs

Inverse transformation for heavy-tail Lambert W RVs

Inverse transformation W_delta_alpha for heavy-tail Lambert W RVs and its derivative. This is the inverse of Tukey's h transformation as a special case of alpha = 1.

W_delta(z, delta = 0) W_delta_alpha(z, delta = 0, alpha = 1) W_2delta(z, delta = c(0, 1/5)) W_2delta_2alpha(z, delta = c(0, 0), alpha = c(1, 1)) deriv_W_delta(z, delta = 0) deriv_W_delta_alpha(z, delta = 1, alpha = 1)

Arguments

  • z: a numeric vector of real values.
  • delta: heavy-tail parameter(s); by default delta = 0, which implies W_delta(z) = z. If a vector of length 2 is supplied, then delta[1] on the left and delta[2] on the right (of the center) will be used.
  • alpha: heavy-tail exponent(s) in (u2)α(u^2)^{\alpha}; default: alpha = 1.

Returns

Computes sgnc("(z)left(frac1alphadeltaW(alphadelta(z2)alpha)\n(z) \\left(\\frac{1}{\\alpha \\delta} W(\\alpha \\delta (z^2)^{\\alpha})\n", "right)1/2alpha\\right)^{1/2 \\alpha}"). If zz is a vector, so is the output.

Examples

G_delta(0) W_delta(0) # W_delta is the inverse of G_delta u.v <- -2:2 W_delta(G_delta(u.v, delta = 0.3), delta = 0.3) # with alpha too G_delta_alpha(u.v, delta = 1, alpha = 0.33) W_delta_alpha(G_delta_alpha(u.v, delta = 1, alpha = 0.33), delta = 1, alpha = 0.33) # the inverse
  • Maintainer: Georg M. Goerg
  • License: GPL (>= 2)
  • Last published: 2023-11-30