get_input back-transforms the observed data y to the (approximate) input data xτ using the transformation vector c("tau=(mux(boldsymbolbeta),\n", "sigmax(boldsymbolbeta),gamma,alpha,delta)").
Note that get.input should be deprecated; however, since it was explicitly referenced in Goerg (2011) I keep it here for future reference. New code should use get_input exclusively.
get_input(y, tau, return.u =FALSE)get.input(...)
Arguments
y: a numeric vector of data values or an object of class LambertW_fit.
tau: named vector τ which defines the variable transformation. Must have at least 'mu_x' and 'sigma_x' element; see complete_tau for details.
return.u: should the normalized input be returned; default: FALSE.
...: arguments passed to get_input.
Returns
The (approximated) input data vector c("\\widehat{\\boldsymbol\n", "x}_{\\tau}").
For gamma != 0 it uses the principal branch solution W_gamma(z, branch = 0) to get a unique input.
For gamma = 0 the back-transformation is bijective (for any δ≥0,α≥0).
If return.u = TRUE, then it returns a list with 2 vectors - u: centered and normalized input uθ,
x: input data xθ.
Examples
set.seed(12)# unskew very skewed datay <- rLambertW(n =1000, theta = list(beta = c(0,1), gamma =0.3), distname ="normal")test_normality(y)fit.gmm <- IGMM(y, type="s")x <- get_input(y, fit.gmm$tau)# the same asx <- get_input(fit.gmm)test_normality(x)# symmetric Gaussian