detectPeaks-methods function

Detects peaks in a MassSpectrum object.

Detects peaks in a MassSpectrum object.

This method looks for peaks in mass spectrometry data (represented by a MassSpectrum object).

A peak is a local maximum above a user defined noise threshold. methods

## S4 method for signature 'MassSpectrum' detectPeaks(object, halfWindowSize=20, method=c("MAD", "SuperSmoother"), SNR=2, ...) ## S4 method for signature 'list' detectPeaks(object, ...)

Arguments

  • object: MassSpectrum object or a list of MassSpectrum objects.

  • halfWindowSize: numeric, half window size.

    The resulting window reaches from mass[currentIndex-halfWindowSize]

    to mass[currentIndex+halfWindowSize]. A local maximum have to be the highest one in the given window to be recognized as peak.

  • method: a noise estimation function; see estimateNoise,MassSpectrum-method.

  • SNR: single numeric value. SNR is an abbreviation for signal-to-noise-ratio. A local maximum has to be higher than SNR*noise to be recognize as peak.

  • ...: arguments to be passed to estimateNoise,MassSpectrum-method. If object is a list mc.cores is also supported.

Returns

Returns a MassPeaks object.

Author(s)

Sebastian Gibb mail@sebastiangibb.de

See Also

MassPeaks, MassSpectrum, estimateNoise,MassSpectrum-method

demo("peaks")

Website: https://strimmerlab.github.io/software/maldiquant/

Examples

## load package library("MALDIquant") ## load example data data("fiedler2009subset", package="MALDIquant") ## choose only the first mass spectrum s <- fiedler2009subset[[1]] ## transform intensities s <- transformIntensity(s, method="sqrt") ## smoothing spectrum s <- smoothIntensity(s, method="MovingAverage") ## remove baseline s <- removeBaseline(s) ## plot spectrum plot(s) ## call peak detection p <- detectPeaks(s) ## draw peaks on the plot points(p) ## label 10 highest peaks top10 <- intensity(p) %in% sort(intensity(p), decreasing=TRUE)[1:10] labelPeaks(p, index=top10)