Ordered multiple correspondence analysis via orthogonal polynomials
Ordered multiple correspondence analysis via orthogonal polynomials
This function is used in the main function MCAvariants when the input parameter is catype="omca". It requires that all categorical variables are ordered variables. It performs the hybrid decomposition of the weighted super-indicator matrix and compute polynomial axes, coordinates, weights of rows and columns and total inertia.
xo: The starting table of variables in reduced code.
np: The column number of the starting table (coincident with the variable number). By default,np=5.
nmod: The number of variable catgories of each variable.
tmod: The total number of variable catgories.
rows: The row number of the starting table (coincident with the individual number).
idr: The row labels of the data table.
idc: The column labels of the data table.
idcv: The labels of the categories of each variable.
vordered: The flag parameter for specifying what variable is ordered. By default, all the five variables are ordered: vordered = c(TRUE,TRUE,TRUE,TRUE,TRUE).
References
Lombardo R and Meulman JJ (2010) Journal of Classification, 27, 191-210.
Beh EJ Lombardo R (2014) Correspondence Analysis, Theory, Practice and New Strategies. Wiley
Author(s)
Rosaria Lombardo
Note
This function belongs to the R object class called mcabasicresults.