FitMLVSBM function

An R6 Class object, a fitted multilevel network once $dovem() is done

An R6 Class object, a fitted multilevel network once $dovem() is done

An R6 Class object, a fitted multilevel network once $dovem() is done

An R6 Class object, a fitted multilevel network once $dovem() is done

Public fields

  • vbound: The vector of variational bound for monitoring convergence

Active bindings

  • affiliation_matrix: Get the affiliation matrix

  • adjacency_matrix: Get the list of adjacency matrices

  • nb_nodes: Get the list of the number of nodes

  • nb_clusters: Get the list of the number of blocks

  • parameters: Get the list of the model parameters

  • membership: Get the list of the variational parameters

  • independent: Are the levels independent?

  • distribution: Emission distribution of each level

  • directed: Are the levels directed?

  • entropy: Get the entropy of the model

  • bound: Get the variational bound of the model

  • df_mixture: Get the degrees of freedom of the mixture parameters

  • df_connect: Get the degrees of freedom of the connection parameters

  • connect: Get the number of possible observed connections

  • ICL: Get the ICL model selection criterion of the model

  • full_penalty: Get the penalty used to compute the ICL

  • Z: Get the list of block memberships (vector form)

  • X_hat: Get the list of the matrices of probability connection predictions

  • map: Get the list of block memberships (matrix form)

  • penalty: Get the ICL penalty

  • likelihood: Compute the likelihood of both levels

  • complete_likelihood: Get the complete likelihood of the model

Methods

Public methods

Method new()

Constructor for the FitMLVSBM class

Usage

FitMLVSBM$new(
  Q = list(I = 1, O = 1),
  A = NA,
  X = NA,
  M = list(I = NA, O = NA),
  directed = NA,
  distribution = list("bernoulli", "bernoulli"),
  independent = FALSE
)

Arguments

  • Q: List of number of blocks

  • A: Affiliation matrix

  • X: List of adjacency matrices

  • M: List of Mask matrices

  • directed: List of boolean

  • distribution: List of string

  • independent: Boolean

Returns

A FitMLVSBM object

Method update_alpha()

Update the connection parameters for the M step

Usage

FitMLVSBM$update_alpha(safeguard = 2 * .Machine$double.eps)

Arguments

  • safeguard: Parameter live in a compact [safeguard, 1-safeguard]

Method update_pi()

Update the upper level mixture parameter for the M step

Usage

FitMLVSBM$update_pi(safeguard = 0.001)

Arguments

  • safeguard: Parameter live in a compact [safeguard, 1-safeguard]

Method update_gamma()

Update the lower level mixture parameter for the M step

Usage

FitMLVSBM$update_gamma(safeguard = 1e-06)

Arguments

  • safeguard: Parameter live in a compact [safeguard, 1-safeguard]

Method init_clustering()

init_clustering Initial clustering for VEM algorithm

Usage

FitMLVSBM$init_clustering(
  safeguard = 2 * .Machine$double.eps,
  method = "hierarchical",
  Z = NULL
)

Arguments

  • safeguard: Parameter live in a compact [safeguard, 1-safeguard]

  • method: Algorithm used to initiate the clustering, either "spectral", "hierarchical" or "merge_split" (if Z is provided)

  • Z: Initial clustering if provided

Method clear()

Reset all parameters

Usage

FitMLVSBM$clear()

Method m_step()

m_step Compute the M step of the VEM algorithm

Usage

FitMLVSBM$m_step(safeguard = 1e-06)

Arguments

  • safeguard: Parameter live in a compact [safeguard, 1-safeguard]

Method ve_step()

Compute the VE step of the VEM algorithm

Usage

FitMLVSBM$ve_step(threshold = 1e-06, fixPointIter = 10, safeguard = 1e-06)

Arguments

  • threshold: The convergence threshold

  • fixPointIter: The maximum number of fixed point iterations

  • safeguard: Parameter live in a compact [safeguard, 1-safeguard]

Method do_vem()

Launch a Variational EM algorithm

Usage

FitMLVSBM$do_vem(
  init = "hierarchical",
  threshold = 1e-06,
  maxIter = 1000,
  fixPointIter = 100,
  safeguard = 1e-06,
  Z = NULL
)

Arguments

  • init: The method for self$init_clustering

  • threshold: The convergence threshold

  • maxIter: The max number of VEM iterations

  • fixPointIter: The max number of fixed point iterations for VE step

  • safeguard: Parameter live in a compact [safeguard, 1-safeguard]

  • Z: Initial clustering if provided

Method permute_empty_class()

permute_empty_class Put empty blocks numbers at the end

Usage

FitMLVSBM$permute_empty_class()

Method plot()

Plot of FitMLVSBM objects

Usage

FitMLVSBM$plot(type = c("matrix"), ...)

Arguments

  • type: A string for the type of plot, just "matrix" for now

Returns

a ggplot2 object

Method show()

print method

Usage

FitMLVSBM$show(type = "Multilevel Stochastic Block Model")

Arguments

  • type: character to tune the displayed name

Method print()

print method

Usage

FitMLVSBM$print()

Method clone()

The objects of this class are cloneable with this method.

Usage

FitMLVSBM$clone(deep = FALSE)

Arguments

  • deep: Whether to make a deep clone.

  • Maintainer: Saint-Clair Chabert-Liddell
  • License: GPL-3
  • Last published: 2022-08-05