An R6 Class object, a fitted multilevel network once $dovem() is done
An R6 Class object, a fitted multilevel network once $dovem() is done
An R6 Class object, a fitted multilevel network once $dovem() is done
vbound
: The vector of variational bound for monitoring convergence
affiliation_matrix
: Get the affiliation matrix
adjacency_matrix
: Get the list of adjacency matrices
nb_nodes
: Get the list of the number of nodes
nb_clusters
: Get the list of the number of blocks
parameters
: Get the list of the model parameters
membership
: Get the list of the variational parameters
independent
: Are the levels independent?
distribution
: Emission distribution of each level
directed
: Are the levels directed?
entropy
: Get the entropy of the model
bound
: Get the variational bound of the model
df_mixture
: Get the degrees of freedom of the mixture parameters
df_connect
: Get the degrees of freedom of the connection parameters
connect
: Get the number of possible observed connections
ICL
: Get the ICL model selection criterion of the model
full_penalty
: Get the penalty used to compute the ICL
Z
: Get the list of block memberships (vector form)
X_hat
: Get the list of the matrices of probability connection predictions
map
: Get the list of block memberships (matrix form)
penalty
: Get the ICL penalty
likelihood
: Compute the likelihood of both levels
complete_likelihood
: Get the complete likelihood of the model
new()
Constructor for the FitMLVSBM class
FitMLVSBM$new(
Q = list(I = 1, O = 1),
A = NA,
X = NA,
M = list(I = NA, O = NA),
directed = NA,
distribution = list("bernoulli", "bernoulli"),
independent = FALSE
)
Q
: List of number of blocks
A
: Affiliation matrix
X
: List of adjacency matrices
M
: List of Mask matrices
directed
: List of boolean
distribution
: List of string
independent
: Boolean
A FitMLVSBM object
update_alpha()
Update the connection parameters for the M step
FitMLVSBM$update_alpha(safeguard = 2 * .Machine$double.eps)
safeguard
: Parameter live in a compact [safeguard, 1-safeguard]
update_pi()
Update the upper level mixture parameter for the M step
FitMLVSBM$update_pi(safeguard = 0.001)
safeguard
: Parameter live in a compact [safeguard, 1-safeguard]
update_gamma()
Update the lower level mixture parameter for the M step
FitMLVSBM$update_gamma(safeguard = 1e-06)
safeguard
: Parameter live in a compact [safeguard, 1-safeguard]
init_clustering()
init_clustering Initial clustering for VEM algorithm
FitMLVSBM$init_clustering(
safeguard = 2 * .Machine$double.eps,
method = "hierarchical",
Z = NULL
)
safeguard
: Parameter live in a compact [safeguard, 1-safeguard]
method
: Algorithm used to initiate the clustering, either "spectral", "hierarchical" or "merge_split" (if Z
is provided)
Z
: Initial clustering if provided
clear()
Reset all parameters
FitMLVSBM$clear()
m_step()
m_step Compute the M step of the VEM algorithm
FitMLVSBM$m_step(safeguard = 1e-06)
safeguard
: Parameter live in a compact [safeguard, 1-safeguard]
ve_step()
Compute the VE step of the VEM algorithm
FitMLVSBM$ve_step(threshold = 1e-06, fixPointIter = 10, safeguard = 1e-06)
threshold
: The convergence threshold
fixPointIter
: The maximum number of fixed point iterations
safeguard
: Parameter live in a compact [safeguard, 1-safeguard]
do_vem()
Launch a Variational EM algorithm
FitMLVSBM$do_vem(
init = "hierarchical",
threshold = 1e-06,
maxIter = 1000,
fixPointIter = 100,
safeguard = 1e-06,
Z = NULL
)
init
: The method for self$init_clustering
threshold
: The convergence threshold
maxIter
: The max number of VEM iterations
fixPointIter
: The max number of fixed point iterations for VE step
safeguard
: Parameter live in a compact [safeguard, 1-safeguard]
Z
: Initial clustering if provided
permute_empty_class()
permute_empty_class Put empty blocks numbers at the end
FitMLVSBM$permute_empty_class()
plot()
Plot of FitMLVSBM objects
FitMLVSBM$plot(type = c("matrix"), ...)
type
: A string for the type of plot, just "matrix" for now
a ggplot2 object
show()
print method
FitMLVSBM$show(type = "Multilevel Stochastic Block Model")
type
: character to tune the displayed name
print()
print method
FitMLVSBM$print()
clone()
The objects of this class are cloneable with this method.
FitMLVSBM$clone(deep = FALSE)
deep
: Whether to make a deep clone.
Useful links