FitSBM function

An R6 Class object for unilevel network

An R6 Class object for unilevel network

a fitted level of a unilevel network once $do_vem() is done

Public fields

  • vbound: vector of variational bound for convergence monitoring

Active bindings

  • adjacency: Get the adjacency matrix

  • mask: Get the mask matrix for dealing with NA

  • nb_nodes: Get the number of nodes of the level

  • nb_clusters: Get the number of blocks

  • distribution: Get the distribution used for the connections

  • directed: Get if the level is directed or not

  • mixture_parameter: Access the block proportions

  • connectivity_parameter: Access the connectivity matrix

  • membership: Access the variational parameters

  • entropy: Get the entropy of the model

  • bound: Get the variational bound of the model

  • df_mixture: Get the degree of freedom of the block proportion

  • df_connect: Get the degree of freedom of the connection parameters

  • connect: Get the number of observed dyads

  • ICL: Get the ICL model selection criterion

  • penalty: Get the penalty used for computing the ICL

  • Z: Access the vector of block membership (clustering)

  • X_hat: Get the connection probability matrix

  • X_likelihood: adjacency part of the log likelihood

  • Z_likelihood: block part of the log likelihood

  • likelihood: complete log likelihood

Methods

Public methods

Method new()

Constructor for FitSBM R6 class

Usage

FitSBM$new(
  Q = 1,
  X = NULL,
  M = NULL,
  directed = FALSE,
  distribution = "bernoulli"
)

Arguments

  • Q: Number of blocks

  • X: Adjacency matrix

  • M: Mask matrix

  • directed: boolean

  • distribution: string (only "bernoulli")

Returns

A new FitSBM object

Method update_alpha()

Update the connection parameter for the M step

Usage

FitSBM$update_alpha(safeguard = 1e-06)

Arguments

  • safeguard: Parameter live in a compact [safeguard, 1-safeguard]

Method update_pi()

Update the upper level mixture parameter for the M step

Usage

FitSBM$update_pi(safeguard = 1e-06)

Arguments

  • safeguard: Parameter live in a compact [safeguard, 1-safeguard]

Method init_clustering()

init_clustering Initial clustering for VEM algorithm

Usage

FitSBM$init_clustering(safeguard = 1e-06, method = "hierarchical", Z = NULL)

Arguments

  • safeguard: Parameter live in a compact [safeguard, 1-safeguard]

  • method: Algorithm used to initiate the clustering, either "spectral", "hierarchical" or "merge_split" (if Z is provided)

  • Z: Initial clustering if provided

Method m_step()

m_step Compute the M step of the VEM algorithm

Usage

FitSBM$m_step(safeguard = 1e-06)

Arguments

  • safeguard: Parameter live in a compact [safeguard, 1-safeguard]

Method ve_step()

Compute the VE step of the VEM algorithm

Usage

FitSBM$ve_step(threshold = 1e-06, fixPointIter = 100, safeguard = 1e-06)

Arguments

  • threshold: The convergence threshold

  • fixPointIter: The maximum number of fixed point iterations

  • safeguard: Parameter live in a compact [safeguard, 1-safeguard]

Method do_vem()

Launch a Variational EM algorithm

Usage

FitSBM$do_vem(
  init = "hierarchical",
  threshold = 1e-06,
  maxIter = 1000,
  fixPointIter = 100,
  safeguard = 1e-06,
  Z = NULL
)

Arguments

  • init: The method for self$init_clustering

  • threshold: The convergence threshold

  • maxIter: The max number of VEM iterations

  • fixPointIter: The max number of fixed point iterations for VE step

  • safeguard: Parameter live in a compact [safeguard, 1-safeguard]

  • Z: Initial clustering if provided

Method permute_empty_class()

permute_empty_class Put empty blocks numbers at the end

Usage

FitSBM$permute_empty_class()

Method clear()

Reset all parameters

Usage

FitSBM$clear()

Method clone()

The objects of this class are cloneable with this method.

Usage

FitSBM$clone(deep = FALSE)

Arguments

  • deep: Whether to make a deep clone.

  • Maintainer: Saint-Clair Chabert-Liddell
  • License: GPL-3
  • Last published: 2022-08-05