An R6 Class object for unilevel network
a fitted level of a unilevel network once $do_vem() is done
vbound
: vector of variational bound for convergence monitoring
adjacency
: Get the adjacency matrix
mask
: Get the mask matrix for dealing with NA
nb_nodes
: Get the number of nodes of the level
nb_clusters
: Get the number of blocks
distribution
: Get the distribution used for the connections
directed
: Get if the level is directed or not
mixture_parameter
: Access the block proportions
connectivity_parameter
: Access the connectivity matrix
membership
: Access the variational parameters
entropy
: Get the entropy of the model
bound
: Get the variational bound of the model
df_mixture
: Get the degree of freedom of the block proportion
df_connect
: Get the degree of freedom of the connection parameters
connect
: Get the number of observed dyads
ICL
: Get the ICL model selection criterion
penalty
: Get the penalty used for computing the ICL
Z
: Access the vector of block membership (clustering)
X_hat
: Get the connection probability matrix
X_likelihood
: adjacency part of the log likelihood
Z_likelihood
: block part of the log likelihood
likelihood
: complete log likelihood
new()
Constructor for FitSBM R6 class
FitSBM$new(
Q = 1,
X = NULL,
M = NULL,
directed = FALSE,
distribution = "bernoulli"
)
Q
: Number of blocks
X
: Adjacency matrix
M
: Mask matrix
directed
: boolean
distribution
: string (only "bernoulli")
A new FitSBM object
update_alpha()
Update the connection parameter for the M step
FitSBM$update_alpha(safeguard = 1e-06)
safeguard
: Parameter live in a compact [safeguard, 1-safeguard]
update_pi()
Update the upper level mixture parameter for the M step
FitSBM$update_pi(safeguard = 1e-06)
safeguard
: Parameter live in a compact [safeguard, 1-safeguard]
init_clustering()
init_clustering Initial clustering for VEM algorithm
FitSBM$init_clustering(safeguard = 1e-06, method = "hierarchical", Z = NULL)
safeguard
: Parameter live in a compact [safeguard, 1-safeguard]
method
: Algorithm used to initiate the clustering, either "spectral", "hierarchical" or "merge_split" (if Z
is provided)
Z
: Initial clustering if provided
m_step()
m_step Compute the M step of the VEM algorithm
FitSBM$m_step(safeguard = 1e-06)
safeguard
: Parameter live in a compact [safeguard, 1-safeguard]
ve_step()
Compute the VE step of the VEM algorithm
FitSBM$ve_step(threshold = 1e-06, fixPointIter = 100, safeguard = 1e-06)
threshold
: The convergence threshold
fixPointIter
: The maximum number of fixed point iterations
safeguard
: Parameter live in a compact [safeguard, 1-safeguard]
do_vem()
Launch a Variational EM algorithm
FitSBM$do_vem(
init = "hierarchical",
threshold = 1e-06,
maxIter = 1000,
fixPointIter = 100,
safeguard = 1e-06,
Z = NULL
)
init
: The method for self$init_clustering
threshold
: The convergence threshold
maxIter
: The max number of VEM iterations
fixPointIter
: The max number of fixed point iterations for VE step
safeguard
: Parameter live in a compact [safeguard, 1-safeguard]
Z
: Initial clustering if provided
permute_empty_class()
permute_empty_class Put empty blocks numbers at the end
FitSBM$permute_empty_class()
clear()
Reset all parameters
FitSBM$clear()
clone()
The objects of this class are cloneable with this method.
FitSBM$clone(deep = FALSE)
deep
: Whether to make a deep clone.
Useful links