This function simulates data using linear models for several graphs: the five basic topologies and three topologies that are common in biology, namely the multi-parent graph, the star graph and the layered graph. See details in Badsha and Fu (2019) and Badsha et al. (2021).
Badsha MB and Fu AQ (2019). Learning causal biological networks with the principle of Mendelian randomization. Frontiers in Genetics, 10:460.
Badsha MB, Martin EA and Fu AQ (2021). MRPC: An R package for inference of causal graphs. Frontiers in Genetics, 10:651812.
See Also
MRPC ; SimulateDataNP , which simulates data for a node with no parent; SimulateData1P for a node with one parent; SimulateData2P for a node with two parents.
Examples
# When there is one genetic variant, the 1st column of# the simulated data matrix will be the variant and the remaining# columns are the gene expression nodes.## Model 0simu_data_M0 <- SimulateData(N =10^3, p =0.45,'model0', b0.1=0, b1.1=1, b1.2=1, b1.3=1, sd.1=1)## Model 1simu_data_M1 <- SimulateData(N =10^3, p =0.45,'model1', b0.1=0, b1.1=1, b1.2=1, b1.3=1, sd.1=1)## Model 2simu_data_M2 <- SimulateData(N =10^3, p =0.45,'model2', b0.1=0, b1.1=1, b1.2=1, b1.3=1, sd.1=1)## Model 3simu_data_M3 <- SimulateData(N =10^3, p =0.45,'model3', b0.1=0, b1.1=1, b1.2=1, b1.3=1, sd.1=1)## Model 4simu_data_M4 <- SimulateData(N =10^3, p =0.45,'model4', b0.1=0, b1.1=1, b1.2=1, b1.3=1, sd.1=1)## Multiple Parent Modelsimu_data_multiparent <- SimulateData(N =10^3, p =0.45,'multiparent', b0.1=0, b1.1=1, b1.2=1, b1.3=1, sd.1=1)## Star Modelsimu_data_starshaped <- SimulateData(N =10^3, p =0.45,'starshaped', b0.1=0, b1.1=1, b1.2=1, b1.3=1, sd.1=1)## Layered Modelsimu_data_layered <- SimulateData(N =10^3, p =0.45,'layered', b0.1=0, b1.1=1, b1.2=1, b1.3=1, sd.1=1)