Volatility function

Volatility filtering.

Volatility filtering.

Method returning the in-sample conditional volatility.

Volatility(object, ...) ## S3 method for class 'MSGARCH_SPEC' Volatility(object, par, data, ...) ## S3 method for class 'MSGARCH_ML_FIT' Volatility(object, newdata = NULL, ...) ## S3 method for class 'MSGARCH_MCMC_FIT' Volatility(object, newdata = NULL, ...)

Arguments

  • object: Model specification of class MSGARCH_SPEC

    created with CreateSpec or fit object of type MSGARCH_ML_FIT

    created with FitML or MSGARCH_MCMC_FIT created with FitMCMC.

  • ...: Not used. Other arguments to Volatility.

  • par: Vector (of size d) or matrix (of size nmcmc x d) of parameter estimates where d must have the same length as the default parameters of the specification.

  • data: Vector (of size T) of observations.

  • newdata: Vector (of size T*) of new observations. (Default newdata = NULL)

Returns

In-sample condititional volatility (vector of size T + T*) of class MSGARCH_CONDVOL.

The MSGARCH_CONDVOL class contains the plot method.

Details

If a matrix of MCMC posterior draws is given, the Bayesian predictive conditional volatility is calculated.

Examples

# create specification spec <- CreateSpec() # load data data("SMI", package = "MSGARCH") # in-sample volatility from specification par <- c(0.1, 0.1, 0.8, 0.2, 0.1, 0.8, 0.99, 0.01) vol <- Volatility(object = spec, par = par, data = SMI) head(vol) plot(vol) # in-sample volatility from ML fit fit <- FitML(spec = spec, data = SMI) vol <- Volatility(object = fit) head(vol) plot(vol) ## Not run: # in-sample volatility from MCMC fit set.seed(1234) fit <- FitMCMC(spec = spec, data = SMI) vol <- Volatility(object = fit) head(vol) plot(vol) ## End(Not run)
  • Maintainer: Keven Bluteau
  • License: GPL (>= 2)
  • Last published: 2022-12-05