VARXmdl function

Vector X autoregressive model

Vector X autoregressive model

This function estimates a vector autoregresive model with p lags. This can be used for the null hypothesis of a linear model against an alternative hypothesis of a Markov switching vector autoregressive model with k regimes.

VARXmdl(Y, p, Z, control = list())

Arguments

  • Y: a (T x q) matrix of observations.

  • p: integer determining the number of autoregressive lags.

  • Z: a (T x qz) matrix of exogenous regressors.

  • control: List with model options including:

    • const: Boolean determining whether to estimate model with constant if TRUE or not if FALSE. Default is TRUE.
    • getSE: Boolean determining whether to compute standard errors of parameters if TRUE or not if FALSE. Default is TRUE.

Returns

List of class VARmdl (S3 object) with model attributes including:

  • y: a (T-p x q) matrix of observations.
  • X: a (T-p x p*q + const) matrix of lagged observations with a leading column of 1s if const=TRUE or not if const=FALSE.
  • x: a (T-p x p*q) matrix of lagged observations.
  • fitted: a (T-p x q) matrix of fitted values.
  • resid: a (T-p x q) matrix of residuals.
  • mu: a (1 x q) vector of estimated means of each process.
  • beta: a ((1 + p + qz) x q) matrix of estimated coefficients.
  • betaZ: a (qz x q) matrix of estimated exogenous regressor coefficients.
  • intercept: estimate of intercepts.
  • phi: a (q x p*q) matrix of estimated autoregressive coefficients.
  • Fmat: Companion matrix containing autoregressive coefficients.
  • stdev: a (q x 1) vector of estimated standard deviation of each process.
  • sigma: a (q x q) estimated covariance matrix.
  • theta: vector containing: mu, vech(sigma), and vec(t(phi)).
  • theta_mu_ind: vector indicating location of mean with 1 and 0 otherwise.
  • theta_sig_ind: vector indicating location of variance and covariances with 1 and 0 otherwise.
  • theta_var_ind: vector indicating location of variances with 1 and 0 otherwise.
  • theta_phi_ind: vector indicating location of autoregressive coefficients with 1 and 0 otherwise.
  • stationary: Boolean indicating if process is stationary if TRUE or non-stationary if FALSE.
  • n: number of observations after lag transformation (i.e., n = T-p).
  • p: number of autoregressive lags.
  • q: number of series.
  • k: number of regimes. This is always 1 in VARmdl.
  • Fmat: matrix from companion form. Used to determine is process is stationary.
  • control: List with model options used.
  • logLike: log-likelihood.
  • AIC: Akaike information criterion.
  • BIC: Bayesian (Schwarz) information criterion.
  • Hess: Hessian matrix. Approximated using hessian and only returned if getSE=TRUE.
  • info_mat: Information matrix. Computed as the inverse of -Hess. If matrix is not PD then nearest PD matrix is obtained using nearest_spd. Only returned if getSE=TRUE.
  • nearPD_used: Boolean determining whether nearPD function was used on info_mat if TRUE or not if FALSE. Only returned if getSE=TRUE.
  • theta_se: standard errors of parameters in theta. Only returned if getSE=TRUE.

Examples

# ----- Bivariate VAR(1) process ----- # set.seed(1234) # Define DGP of VAR process mdl_var <- list(n = 1000, p = 1, q = 2, mu = c(5,-2), sigma = rbind(c(5.0, 1.5), c(1.5, 1.0)), phi = rbind(c(0.50, 0.30), c(0.20, 0.70))) # Simulate process using simuVAR() function y_simu <- simuVAR(mdl_var) # Set options for model estimation control <- list(const = TRUE, getSE = TRUE) # Estimate model y_var_mdl <- VARmdl(y_simu$y, p = 2, control = control) summary(y_var_mdl)

See Also

MSVARmdl

  • Maintainer: Gabriel Rodriguez Rondon
  • License: GPL (>= 2)
  • Last published: 2025-02-24