simuMSARX function

Simulate Markov-switching ARX process

Simulate Markov-switching ARX process

This function simulates a Markov-switching autoregressive process.

simuMSARX(mdl_h0, burnin = 100)

Arguments

  • mdl_h0: List containing the following DGP parameters

    • n: Length of series.
    • k: Number of regimes.
    • mu: A (k x 1) vector with mean of process in each regime.
    • sigma: A (k x 1) vector with standard deviation of process in each regime.
    • phi: Vector of autoregressive coefficients.
    • P: A (k x k) transition matrix (columns must sum to one).
    • eps: An optional (T+burnin x q) matrix with standard normal errors to be used. Errors will be generated if not provided.
    • Z: A (T x qz) matrix with exogenous regressors (Optional) and where qz is the number of exogenous variables.
    • betaZ: A (qz x 1) matrix true coefficients on exogenous regressors (Optional) and where qz is the number of exogenous variables.
  • burnin: Number of simulated observations to remove from beginning. Default is 100.

Returns

List with simulated Markov-switching autoregressive process and its DGP properties.

Examples

set.seed(1234) # Define DGP of MS AR process mdl_ms2 <- list(n = 500, mu = c(5,10), sigma = c(1,2), phi = c(0.5, 0.2), k = 2, P = rbind(c(0.90, 0.10), c(0.10, 0.90))) # Simulate process using simuMSAR() function y_ms_simu <- simuMSAR(mdl_ms2) plot(y_ms_simu)
  • Maintainer: Gabriel Rodriguez Rondon
  • License: GPL (>= 2)
  • Last published: 2025-02-24