simuMSVAR function

Simulate Markov-switching vector autoregressive process

Simulate Markov-switching vector autoregressive process

This function simulates a Markov-switching vector autoregressive process.

simuMSVAR(mdl_h0, burnin = 100)

Arguments

  • mdl_h0: List containing the following DGP parameters

    • n: Length of series.
    • k: Number of regimes.
    • mu: A (k x q) matrix of means.
    • sigma: List with k (q x q) covariance matrices.
    • phi: A (q x qp) matrix of autoregressive coefficients.
    • p: Number of autoregressive lags.
    • q: Number of series.
    • P: A (k x k) transition matrix (columns must sum to one).
    • eps: An optional (T+burnin x q) matrix with standard normal errors to be used. Errors will be generated if not provided.
  • burnin: Number of simulated observations to remove from beginning. Default is 100.

Returns

List with simulated vector autoregressive series and its DGP parameters.

Examples

set.seed(1234) # Define DGP of MS VAR process mdl_msvar2 <- list(n = 1000, p = 1, q = 2, mu = rbind(c(5, -2), c(10, 2)), sigma = list(rbind(c(5.0, 1.5), c(1.5, 1.0)), rbind(c(7.0, 3.0), c(3.0, 2.0))), phi = rbind(c(0.50, 0.30), c(0.20, 0.70)), k = 2, P = rbind(c(0.90, 0.10), c(0.10, 0.90))) # Simulate process using simuMSVAR() function y_msvar_simu <- simuMSVAR(mdl_msvar2) plot(y_msvar_simu)
  • Maintainer: Gabriel Rodriguez Rondon
  • License: GPL (>= 2)
  • Last published: 2025-02-24