simuNorm function

Simulate normally distributed process

Simulate normally distributed process

This function simulates a normally distributed process.

simuNorm(mdl_h0, burnin = 0)

Arguments

  • mdl_h0: List containing the following DGP parameters

    • n: Length of series.
    • mu: A (q x 1) vector of means.
    • sigma: A (q x q) covariance matrix.
    • q: Number of series.
    • eps: An optional (T+burnin x q) matrix with standard normal errors to be used. Errors will be generated if not provided.
    • Z: A (T x qz) matrix with exogenous regressors (Optional) and where qz is the number of exogenous variables.
    • betaZ: A (qz x q) matrix true coefficients on exogenous regressors (Optional) and where qz is the number of exogenous variables.
  • burnin: Number of simulated observations to remove from beginning. Default is 100.

Returns

List with simulated series and its DGP parameters.

Examples

set.seed(1234) # Define DGP mdl_norm <- list(n = 1000, q = 2, mu = c(5, -2), sigma = rbind(c(5.0, 1.5), c(1.5, 1.0))) # Simulate process using simuNorm() function y_norm_simu <- simuNorm(mdl_norm) plot(y_norm_simu)
  • Maintainer: Gabriel Rodriguez Rondon
  • License: GPL (>= 2)
  • Last published: 2025-02-24