BVAR function

Bayesian Vector Autoregression

Bayesian Vector Autoregression

Estimate a VAR(p) model using Bayesian approach, including the use of Minnesota prior

BVAR(z,p=1,C,V0,n0=5,Phi0=NULL,include.mean=T)

Arguments

  • z: A matrix of vector time series, each column represents a series.
  • p: The AR order. Default is p=1.
  • C: The precision matrix of the coefficient matrix. With constant, the dimension of C is (kp+1)-by-(kp+1). The covariance matrix of the prior for the parameter vec(Beta) is Kronecker(Sigma_a,C-inverse).
  • V0: A k-by-k covariance matrix to be used as prior for the Sigma_a matrix
  • n0: The degrees of freedom used for prior of the Sigma_a matrix, the covariance matrix of the innovations. Default is n0=5.
  • Phi0: The prior mean for the parameters. Default is set to NULL, implying that the prior means are zero.
  • include.mean: A logical switch controls the constant term in the VAR model. Default is to include the constant term.

Details

for a given prior, the program provide the posterior estimates of a VAR(p) model.

Returns

  • est: Posterior means of the parameters

  • Sigma: Residual covariance matrix

References

Tsay (2014, Chapter 2).

Author(s)

Ruey S. Tsay

Examples

data("mts-examples",package="MTS") z=log(qgdp[,3:5]) zt=diffM(z)*100 C=0.1*diag(rep(1,7)) V0=diag(rep(1,3)) BVAR(zt,p=2,C,V0)
  • Maintainer: Ruey S. Tsay
  • License: Artistic License 2.0
  • Last published: 2022-04-11

Useful links