Error-Correction VAR Models
Performs estimation of an Error-Correction VAR(p) model using the Quasi Maximum Likelihood Method.
ECMvar(x, p, ibeta, include.const = FALSE, fixed = NULL, alpha = NULL, se.alpha = NULL, se.beta = NULL, phip = NULL, se.phip = NULL)
x
: A T-by-k data matrix of a k-dimensional co-integrated VAR processp
: VAR orderibeta
: Initial estimate of the co-integrating matrix. The number of columns of ibeta is the number of co-integrating seriesinclude.const
: A logical switch to include a constant term in the model. The default is no constantfixed
: A logical matrix to set zero parameter constraints.alpha
: Initial estimate of alpha, if anyse.alpha
: Initial estimate of the standard error of alpha, if anyse.beta
: Initial estimate of the standard error of beta, if anyphip
: Initial estimate of the VAR coefficients, if anyse.phip
: Initial estimate of the standard error of the VAR coefficients, if anydata: The vector time series
ncoint: The number of co-integrating series
arorder: VAR order
include.const: Logical switch to include constant
alpha,se.alpha: Estimates and their standard errors of the alpha matrix
beta,se.beta: Estimates and their standard errors of the beta matrix
aic,bic: Information criteria of the fitted model
residuals: The residual series
Sigma: Residual covariance matrix
Phip,se.Phip: Estimates and their standard errors of VAR coefficients
Tsay (2014, Chapter 5)
Ruey S. Tsay
ECMvar1
phi=matrix(c(0.5,-0.25,-1.0,0.5),2,2); theta=matrix(c(0.2,-0.1,-0.4,0.2),2,2) Sig=diag(2) mm=VARMAsim(300,arlags=c(1),malags=c(1),phi=phi,theta=theta,sigma=Sig) zt=mm$series[,c(2,1)] beta=matrix(c(1,0.5),2,1) m1=ECMvar(zt,3,ibeta=beta) names(m1)
Useful links