Use exponentially weighted moving-average method to compute the volatility matrix
EWMAvol(rtn, lambda =0.96)
Arguments
rtn: A T-by-k data matrix of k-dimensional asset returns, assuming the mean is zero
lambda: Smoothing parameter. The default is 0.96. If lambda is negative, then the multivariate Gaussian likelihood is used to estimate the smoothing parameter.
Returns
Sigma.t: The volatility matrix with each row representing a volatility matrix
return: The data
lambda: The smoothing parameter lambda used
References
Tsay (2014, Chapter 7). Multivariate Time Series Analysis with R and Financial Applications. John Wiley. Hoboken, NJ.