Fitting a VARMA Model via Kronecker Index
Perform estimation of a VARMA model specified by the Kronecker indices
Kronfit(da, kidx, include.mean = T, fixed = NULL, Kpar=NULL, seKpar=NULL, prelim = F, details = F, thres = 1)
da
: Data matrix (T-by-k) of a k-dimensional time serieskidx
: The vector consisting of Kronecker indicesinclude.mean
: A logical switch for including the mean vector in estimation. Default is to include the mean vector.fixed
: A logical matrix used to set zero parameter constraints. This is used mainly in the command refKronfit.Kpar
: Parameter vectors for use in model simplificationseKpar
: Standard errors of the parameter estimates for use in model simplificationprelim
: A logical switch for a preliminary estimation.details
: A logical switch to control output.thres
: A threshold for t-ratios in setting parameter to zero. Default is 1.data: The observed time series data
Kindex: Kronecker indices
ARid: Specification of AR parameters: 0 denotes fixing to zero, 1 denotes fixing to 1, and 2 denoting estimation
MAid: Specification of MA parameters
cnst: A logical variable: include.mean
coef: Parameter estimates
se.coef: Standard errors of the estimates
residuals: Residual series
Sigma: Residual covariance matrix
aic,bic: Information criteria of the fitted model
Ph0: Constant vector
Phi: AR coefficient matrices
Theta: MA coefficient matrices
Tsay (2014, Chapter 4). Multivariate Time Series Analysis with R and Financial Applications. John Wiley. Hoboken, NJ.
Ruey S. Tsay
refKronfit, Kronspec
Useful links