REGts function

Regression Model with Time Series Errors

Regression Model with Time Series Errors

Perform the maximum likelihood estimation of a multivariate linear regression model with time-series errors

REGts(zt, p, xt, include.mean = T, fixed = NULL, par = NULL, se.par = NULL, details = F)

Arguments

  • zt: A T-by-k data matrix of a k-dimensional time series
  • p: The VAR order
  • xt: A T-by-v data matrix of independent variables, where v denotes the number of independent variables (excluding constant 1).
  • include.mean: A logical switch to include the constant term. Default is to include the constant term.
  • fixed: A logical matrix used to set parameters to zero
  • par: Initial parameter estimates of the beta coefficients, if any.
  • se.par: Standard errors of the parameters in par, if any.
  • details: A logical switch to control the output

Details

Perform the maximum likelihood estimation of a multivariate linear regression model with time series errors. Use multivariate linear regression to obtain initial estimates of regression coefficients if not provided

Returns

  • data: The observed k-dimensional time series

  • xt: The data matrix of independent variables

  • aror: VAR order

  • include.mean: Logical switch for the constant vector

  • Phi: The VAR coefficients

  • se.Phi: The standard errors of Phi coefficients

  • beta: The regression coefficients

  • se.beta: The standard errors of beta

  • residuals: The residual series

  • Sigma: Residual covariance matrix

  • coef: Parameter estimates, to be used in model simplification.

  • se.coef: Standard errors of parameter estimates

References

Tsay (2014, Chapter 6). Multivariate Time Series Analysis with R and Financial Applications. John Wiley. Hoboken NJ.

Author(s)

Ruey S. Tsay

  • Maintainer: Ruey S. Tsay
  • License: Artistic License 2.0
  • Last published: 2022-04-11

Useful links