SCMfit function

Scalar Component Model Fitting

Scalar Component Model Fitting

Perform estimation of a VARMA model specified via the SCM approach

SCMfit(da, scms, Tdx, include.mean = T, fixed = NULL, prelim = F, details = F, thres = 1, ref = 0, SCMpar=NULL, seSCMpar=NULL)

Arguments

  • da: The T-by-k data matrix of a k-dimensional time series
  • scms: A k-by-2 matrix of the orders of SCMs
  • Tdx: A k-dimensional vector for locating "1" of each row in the transformation matrix.
  • include.mean: A logical switch to include the mean vector. Default is to include mean vector.
  • fixed: A logical matrix to set parameters to zero
  • prelim: A logical switch for preliminary estimation. Default is false.
  • details: A logical switch to control details of output
  • thres: Threshold for individual t-ratio when setting parameters to zero. Default is 1.
  • ref: A switch to use SCMmod in model specification.
  • SCMpar: Parameter estimates of the SCM model, to be used in model refinement
  • seSCMpar: Standard errors of the parameter estimates in SCMpar

Details

Perform conditional maximum likelihood estimation of a VARMA model specified by the scalar component model approach, including the transformation matrix.

Returns

  • data: Observed time series

  • SCMs: The specified SCMs

  • Tdx: Indicator vector for the transformation matrix. The length of Tdx is k.

  • locTmtx: Specification of estimable parameters of the transformation matrix

  • locAR: Locators for the estimable parameters of the VAR coefficients

  • locMA: Locators for the estimable parameters of the VMA coefficients

  • cnst: A logical switch to include the constant vector in the model

  • coef: The parameter estimates

  • secoef: Standard errors of the parameter estimates

  • residuals: Residual series

  • Sigma: Residual covariance matrix

  • aic,bic: Information criteria of the fitted model

  • Ph0: Estimates of the constant vector, if any

  • Phi: Estimates of the VAR coefficients

  • Theta: Estimates of the VMA coefficients

References

Tsay (2014, Chapter 4). Multivariate Time Series Analysis with R and Financial Applications. John Wiley. Hoboken, NJ.

Author(s)

Ruey S. Tsay

  • Maintainer: Ruey S. Tsay
  • License: Artistic License 2.0
  • Last published: 2022-04-11

Useful links