Scalar Component Identification
Find the overall order of a VARMA process via the scalar component model approach
SCMid(zt, maxp = 5, maxq = 5, h = 0, crit = 0.05, output = FALSE)
zt
: The T-by-k data matrix of a k-dimensional time seriesmaxp
: Maximum AR order entertained. Default is 5.maxq
: Maximum MA order entertained. Default is 5.h
: The additional past lags used in canonical correlation analysis. Default is 0.crit
: Type-I error of the chi-square tests used.output
: A logical switch to control the output.Nmtx: The table of the numbers of zero canonical correlations
DDmtx: The diagonal difference table of the number of zero canonical correlations
Tsay (2014, Chapter 4). Multivariate Time Series Analysis with R and Financial Applications. John Wiley. Hoboken, NJ.
Ruey S. Tsay
phi=matrix(c(0.2,-0.6,0.3,1.1),2,2); sigma=diag(2) m1=VARMAsim(300,arlags=c(1),phi=phi,sigma=sigma) zt=m1$series m2=SCMid(zt)
Useful links