VARMACpp function

Vector Autoregressive Moving-Average Models (Cpp)

Vector Autoregressive Moving-Average Models (Cpp)

Performs conditional maximum likelihood estimation of a VARMA model. Multivariate Gaussian likelihood function is used. This is the same function as VARMA, with the likelihood function implemented in C++ for efficiency.

VARMACpp(da, p = 0, q = 0, include.mean = T, fixed = NULL, beta=NULL, sebeta=NULL, prelim = F, details = F, thres = 2)

Arguments

  • da: Data matrix (T-by-k) of a k-dimensional time series with sample size T.
  • p: AR order
  • q: MA order
  • include.mean: A logical switch to control estimation of the mean vector. Default is to include the mean in estimation.
  • fixed: A logical matrix to control zero coefficients in estimation. It is mainly used by the command refVARMA.
  • beta: Parameter estimates to be used in model simplification, if needed
  • sebeta: Standard errors of parameter estimates for use in model simplification
  • prelim: A logical switch to control preliminary estimation. Default is none.
  • details: A logical switch to control the amount of output.
  • thres: A threshold used to set zero parameter constraints based on individual t-ratio. Default is 2.

Details

The fixed command is used for model refinement

Returns

  • data: Observed data matrix

  • ARorder: VAR order

  • MAorder: VMA order

  • cnst: A logical switch to include the mean vector

  • coef: Parameter estimates

  • secoef: Standard errors of the estimates

  • residuals: Residual matrix

  • Sigma: Residual covariance matrix

  • aic,bic: Information criteria of the fitted model

  • Phi: VAR coefficients

  • Theta: VMA coefficients

  • Ph0: The constant vector

References

Tsay (2014, Chapter 3). Multivariate Time Series Analysis with R and Financial Applications. John Wiley. Hoboken, NJ.

Author(s)

Ruey S. Tsay

See Also

VARMA

Examples

phi=matrix(c(0.2,-0.6,0.3,1.1),2,2); theta=matrix(c(-0.5,0,0,-0.5),2,2) sigma=diag(2) m1=VARMAsim(300,arlags=c(1),malags=c(1),phi=phi,theta=theta,sigma=sigma) zt=m1$series m2=VARMA(zt,p=1,q=1,include.mean=FALSE)
  • Maintainer: Ruey S. Tsay
  • License: Artistic License 2.0
  • Last published: 2022-04-11

Useful links