VMA function

Vector Moving Average Model

Vector Moving Average Model

Performs VMA estimation using the conditional multivariate Gaussian likelihood function

VMA(da, q = 1, include.mean = T, fixed = NULL, beta=NULL, sebeta=NULL, prelim = F, details = F, thres = 2)

Arguments

  • da: Data matrix of a k-dimensional VMA process with each column containing one time series
  • q: The order of VMA model
  • include.mean: A logical switch to include the mean vector. The default is to include the mean vector in estimation.
  • fixed: A logical matrix used to fix parameter to zero
  • beta: Parameter estimates for use in model simplification
  • sebeta: Standard errors of parameter estimates for use in model simplification
  • prelim: A logical switch to select parameters to be included in estimation
  • details: A logical switch to control the amount of output
  • thres: Threshold for t-ratio used to fix parameter to zero. Default is 2.

Returns

  • data: The data of the observed time series

  • MAorder: The VMA order

  • cnst: A logical switch to include the mean vector

  • coef: Parameter estimates

  • secoef: Standard errors of the parameter estimates

  • residuals: Residual series

  • Sigma: Residual covariance matrix

  • Theta: The VAR coefficient matrix

  • mu: The constant vector

  • aic,bic: The information criteria of the fitted model

References

Tsay (2014, Chapter 3).

Author(s)

Ruey S. Tsay

Examples

theta=matrix(c(0.5,0.4,0,0.6),2,2); sigma=diag(2) m1=VARMAsim(200,malags=c(1),theta=theta,sigma=sigma) zt=m1$series m2=VMA(zt,q=1,include.mean=FALSE)
  • Maintainer: Ruey S. Tsay
  • License: Artistic License 2.0
  • Last published: 2022-04-11

Useful links