Vmiss function

VARMA Model with Missing Value

VARMA Model with Missing Value

Assuming that the model is known, this program estimates the value of a missing data point. The whole data point is missing.

Vmiss(zt, piwgt, sigma, tmiss, cnst = NULL, output = T)

Arguments

  • zt: A T-by-k data matrix of a k-dimensional time series
  • piwgt: The pi-weights of a VARMA model defined as piwgt=[pi0, pi1, pi2, ....]
  • sigma: Positive definite covariance matrix of the innovations
  • tmiss: Time index of the missing data point
  • cnst: Constant term of the model
  • output: A logical switch to control output

Details

Use the least squares method to estimate a missing data point. The missing is random.

Returns

Estimates of the missing values

References

Tsay (2014, Chapter 6). Multivariate Time Series Analysis with R and Financial Applications. John Wiley. Hoboken, NJ.

Author(s)

Ruey S. Tsay

See Also

Vpmiss

Examples

data("mts-examples",package="MTS") gdp=log(qgdp[,3:5]) m1=VAR(gdp,3) piwgt=m1$Phi; Sig=m1$Sigma; cnst=m1$Ph0 m2=Vmiss(gdp,piwgt,Sig,50,cnst)
  • Maintainer: Ruey S. Tsay
  • License: Artistic License 2.0
  • Last published: 2022-04-11

Useful links