Manifold-definitions function

Manifold definitions

Manifold definitions

Get definitions for simple manifolds

get.stiefel.defn(n, p, numofmani = 1L, ParamSet = 1L) get.grassmann.defn(n, p, numofmani = 1L, ParamSet = 1L) get.spd.defn(n, numofmani = 1L, ParamSet = 1L) get.sphere.defn(n, numofmani = 1L, ParamSet = 1L) get.euclidean.defn(n, m, numofmani = 1L, ParamSet = 1L) get.lowrank.defn(n, m, p, numofmani = 1L, ParamSet = 1L) get.orthgroup.defn(n, numofmani = 1L, ParamSet = 1L)

Arguments

  • n: Dimension for manifold object (see Details)
  • p: Dimension for manifold object (see Details)
  • numofmani: Multiplicity of this space. For example, use numofmani = 2 if problem requires 2 points from this manifold
  • ParamSet: A positive integer indicating a set of properties for the manifold which can be used by the solver. See Huang et al (2016b) for details.
  • m: Dimension for manifold object (see Details)

Returns

List containing input arguments and name field denoting the type of manifold

Details

The functions define manifolds as follows:

  • get.stiefel.defn: Stiefel manifold {XRn×p:XTX=I}\{X \in R^{n \times p} : X^T X = I\}
  • get.grassmann.defn: Grassmann manifold of pp-dimensional subspaces in RnR^n
  • get.spd.defn: Manifold of n×nn \times n symmetric positive definite matrices
  • get.sphere.defn: Manifold of nn-dimensional vectors on the unit sphere
  • get.euclidean.defn: Euclidean Rn×mR^{n \times m} space
  • get.lowrank.defn: Low-rank manifold {XRn×m:rank(X)=p}\{ X \in R^{n \times m} : \textrm{rank}(X) = p \}
  • get.orthgroup.defn: Orthonormal group {XRn×n:XTX=I}\{X \in R^{n \times n} : X^T X = I\}

References

Wen Huang, P.A. Absil, K.A. Gallivan, Paul Hand (2016a). "ROPTLIB: an object-oriented C++ library for optimization on Riemannian manifolds." Technical Report FSU16-14, Florida State University.

Wen Huang, Kyle A. Gallivan, and P.A. Absil (2016b). Riemannian Manifold Optimization Library. URL https://www.math.fsu.edu/~whuang2/pdf/USER_MANUAL_for_2016-04-29.pdf

S. Martin, A. Raim, W. Huang, and K. Adragni (2020). "ManifoldOptim: An R Interface to the ROPTLIB Library for Riemannian Manifold Optimization." Journal of Statistical Software, 93(1):1-32.

  • Maintainer: Sean R. Martin
  • License: GPL (>= 2)
  • Last published: 2021-12-15

Useful links