Manifold definitions
Get definitions for simple manifolds
get.stiefel.defn(n, p, numofmani = 1L, ParamSet = 1L) get.grassmann.defn(n, p, numofmani = 1L, ParamSet = 1L) get.spd.defn(n, numofmani = 1L, ParamSet = 1L) get.sphere.defn(n, numofmani = 1L, ParamSet = 1L) get.euclidean.defn(n, m, numofmani = 1L, ParamSet = 1L) get.lowrank.defn(n, m, p, numofmani = 1L, ParamSet = 1L) get.orthgroup.defn(n, numofmani = 1L, ParamSet = 1L)
n
: Dimension for manifold object (see Details)p
: Dimension for manifold object (see Details)numofmani
: Multiplicity of this space. For example, use numofmani = 2
if problem requires 2 points from this manifoldParamSet
: A positive integer indicating a set of properties for the manifold which can be used by the solver. See Huang et al (2016b) for details.m
: Dimension for manifold object (see Details)List containing input arguments and name field denoting the type of manifold
The functions define manifolds as follows:
get.stiefel.defn
: Stiefel manifold get.grassmann.defn
: Grassmann manifold of -dimensional subspaces in get.spd.defn
: Manifold of symmetric positive definite matricesget.sphere.defn
: Manifold of -dimensional vectors on the unit sphereget.euclidean.defn
: Euclidean spaceget.lowrank.defn
: Low-rank manifold get.orthgroup.defn
: Orthonormal group Wen Huang, P.A. Absil, K.A. Gallivan, Paul Hand (2016a). "ROPTLIB: an object-oriented C++ library for optimization on Riemannian manifolds." Technical Report FSU16-14, Florida State University.
Wen Huang, Kyle A. Gallivan, and P.A. Absil (2016b). Riemannian Manifold Optimization Library. URL https://www.math.fsu.edu/~whuang2/pdf/USER_MANUAL_for_2016-04-29.pdf
S. Martin, A. Raim, W. Huang, and K. Adragni (2020). "ManifoldOptim: An R Interface to the ROPTLIB Library for Riemannian Manifold Optimization." Journal of Statistical Software, 93(1):1-32.
Useful links