MN_MLE function

Matrix-normal maximum likelihood estimator

Matrix-normal maximum likelihood estimator

A function for fitting the JJ-class matrix-normal model using maximum likelihood. Uses the so-called ``flip-flop'' algorithm after initializing at U=IrU = I_r.

MN_MLE(X, class, max.iter = 1000, tol = 1e-06, quiet = TRUE)

Arguments

  • X: An r×c×Nr \times c \times N array of training set predictors.
  • class: NN-vector of training set class labels; should be numeric from {1,...,J}\left\{1,...,J\right\}.
  • max.iter: Maximum number of iterations for ``flip-flop'' algorithm.
  • tol: Convergence tolerance for the ``flip flop'' algorithm; based on decrease in negative log-likelihood.
  • quiet: Logical. Should the objective function value be printed at each update? Default is TRUE. Note that quiet=FALSE will increase computational time.

Returns

Returns of list of class "MN", which contains the following elements: - Mean: Xˉ\bar{X}; An r×c×Cr \times c \times C array of sample class means.

  • U: U^MLE\hat{U}^{\rm MLE}; the r×rr \times r estimated precision matrix for the row variables.

  • V: V^MLE\hat{V}^{\rm MLE}; the c×cc \times c estimated precision matrix for the column variables.

  • pi.list: π^\hat{\pi}; JJ-vector with marginal class probabilities from training set.

References

  • Molstad, A. J., and Rothman, A. J. (2018). A penalized likelihood method for classification with matrix-valued predictors. Journal of Computational and Graphical Statistics.

Examples

## Generate realizations of matrix-normal random variables ## set sample size, dimensionality, number of classes, ## and marginal class probabilities N = 75 N.test = 150 N.total = N + N.test r = 16 p = 16 C = 3 pi.list = rep(1/C, C) ## create class means M.array = array(0, dim=c(r, p, C)) M.array[3:4, 3:4, 1] = 1 M.array[5:6, 5:6, 2] = .5 M.array[3:4, 3:4, 3] = -2 M.array[5:6, 5:6, 3] = -.5 ## create covariance matrices U and V Uinv = matrix(0, nrow=r, ncol=r) for (i in 1:r) { for (j in 1:r) { Uinv[i,j] = .5^abs(i-j) } } eoU = eigen(Uinv) Uinv.sqrt = tcrossprod(tcrossprod(eoU$vec, diag(eoU$val^(1/2))),eoU$vec) Vinv = matrix(.5, nrow=p, ncol=p) diag(Vinv) = 1 eoV = eigen(Vinv) Vinv.sqrt = tcrossprod(tcrossprod(eoV$vec, diag(eoV$val^(1/2))),eoV$vec) ## generate N.total realizations of matrix-variate normal data set.seed(1) X = array(0, dim=c(r,p,N.total)) class = numeric(length=N.total) for(jj in 1:N.total){ class[jj] = sample(1:C, 1, prob=pi.list) X[,,jj] = tcrossprod(crossprod(Uinv.sqrt, matrix(rnorm(r*p), nrow=r)), Vinv.sqrt) + M.array[,,class[jj]] } ## fit matrix-normal model using maximum likelihood out = MN_MLE(X = X, class = class)