A function for fitting the J-class matrix-normal model using maximum likelihood. Uses the so-called ``flip-flop'' algorithm after initializing at U=Ir.
MN_MLE(X, class, max.iter =1000, tol =1e-06, quiet =TRUE)
Arguments
X: An r×c×N array of training set predictors.
class: N-vector of training set class labels; should be numeric from {1,...,J}.
max.iter: Maximum number of iterations for ``flip-flop'' algorithm.
tol: Convergence tolerance for the ``flip flop'' algorithm; based on decrease in negative log-likelihood.
quiet: Logical. Should the objective function value be printed at each update? Default is TRUE. Note that quiet=FALSE will increase computational time.
Returns
Returns of list of class "MN", which contains the following elements: - Mean: Xˉ; An r×c×C array of sample class means.
U: U^MLE; the r×r estimated precision matrix for the row variables.
V: V^MLE; the c×c estimated precision matrix for the column variables.
pi.list: π^; J-vector with marginal class probabilities from training set.
References
Molstad, A. J., and Rothman, A. J. (2018). A penalized likelihood method for classification with matrix-valued predictors. Journal of Computational and Graphical Statistics.
Examples
## Generate realizations of matrix-normal random variables## set sample size, dimensionality, number of classes, ## and marginal class probabilitiesN =75N.test =150N.total = N + N.test
r =16p =16C =3pi.list = rep(1/C, C)## create class meansM.array = array(0, dim=c(r, p, C))M.array[3:4,3:4,1]=1M.array[5:6,5:6,2]=.5M.array[3:4,3:4,3]=-2M.array[5:6,5:6,3]=-.5## create covariance matrices U and VUinv = matrix(0, nrow=r, ncol=r)for(i in1:r){for(j in1:r){ Uinv[i,j]=.5^abs(i-j)}}eoU = eigen(Uinv)Uinv.sqrt = tcrossprod(tcrossprod(eoU$vec,diag(eoU$val^(1/2))),eoU$vec)Vinv = matrix(.5, nrow=p, ncol=p)diag(Vinv)=1eoV = eigen(Vinv)Vinv.sqrt = tcrossprod(tcrossprod(eoV$vec,diag(eoV$val^(1/2))),eoV$vec)## generate N.total realizations of matrix-variate normal dataset.seed(1)X = array(0, dim=c(r,p,N.total)) class = numeric(length=N.total)for(jj in1:N.total){ class[jj]= sample(1:C,1, prob=pi.list) X[,,jj]= tcrossprod(crossprod(Uinv.sqrt, matrix(rnorm(r*p), nrow=r)), Vinv.sqrt)+ M.array[,,class[jj]]}## fit matrix-normal model using maximum likelihoodout = MN_MLE(X = X, class = class)