Description: It finds Orthogonal Data Projections with Maximal Skewness. The first data projection in the output is the most skewed among all linear data projections. The second data projection in the output is the most skewed among all data projections orthogonal to the first one, and so on.
License: GPL-2
Author(s)
Cinzia Franceschini and Nicola Loperfido
References
de Lathauwer L., de Moor B.and Vandewalle J. (2000). Onthebestrank-1andrank-(R_1,R_2,...R_N) approximation of high-order tensors. SIAM Jour. Matrix Ana. Appl. 21, 1324-1342.
Loperfido, N. (2010). Canonical Transformations of Skew-Normal Variates. Test 19, 146-165.
Loperfido, N. (2013). Skewness and the Linear Discriminant Function. Statistics and Probability Letters 83, 93-99.
Malkovich, J.F. and Afifi, A.A. (1973). On Tests for Multivariate Normality. J. Amer. Statist. Ass. 68, 176-179
Examples
## Example 1. Run MaxSkew on the iris data data(iris)iris<-data.matrix(iris)#returns the matrix obtained by converting the data frame to numeric modeMaxSkew(iris[,1:3],5,2,FALSE)# matrix whose columns are the two projections with maximal skewnessMaxSkew(iris[,1:2],5,1,FALSE)#projection with maximal skewness of the first two variables#MaxSkewBiv(iris[,1],iris[,2]) #obtains the same of MaxSkew(iris[,1:2],5,1)## Example 2. Run MaxSkew on the OLYMPIC_DECATHLON_2016 data data(OLYMPIC_DECATHLON_2016)OLYMPIC_DECATHLON_2016_matrix<-data.matrix(OLYMPIC_DECATHLON_2016)#returns a data matrixMaxSkew(OLYMPIC_DECATHLON_2016_matrix[,4:13],10,2,TRUE)#it returns also the scatterplotMaxSkew(OLYMPIC_DECATHLON_2016_matrix[,4:13],10,2,FALSE)#as in example 1OLYMPIC_DECATHLON_2016_projections<-MaxSkew(OLYMPIC_DECATHLON_2016_matrix[,4:13],10,2,FALSE)plot(OLYMPIC_DECATHLON_2016_projections)#scatterplot of the first two projections##install.packages("calibrate")##library(calibrate)##textxy(OLYMPIC_DECATHLON_2016_projections[,1],OLYMPIC_DECATHLON_2016_projections[,2],##OLYMPIC_DECATHLON_2016$ATHLETE,offset=0.5)