Parameter Estimation of Normal Mixture Using EM Algorithm
Parameter Estimation of Normal Mixture Using EM Algorithm
EMnormal' is used to estimate the parameters of a univariate or multivariate normal mixture model using the expectation-maximization (EM) algorithm. The result can be used as the initial value for the mixLogconcandmixLogconcHD` function.
EMnormal(x, C =2, nstart =20, tol =1e-05)
Arguments
x: an n by p data matrix where n is the number of observations and p is the dimension of the data.
C: number of mixture components. Default is 2.
nstart: number of initializations to try. Default is 20.
tol: stopping criteria (threshold value) for the EM algorithm. Default is 1e-05.
Returns
A list containing the following elements: - loglik: final log-likelihood.
pi: estimated mixing proportions.
mu: estimated component means.
sigma: estimated component standard deviation or covariance matrix.