mixregRM2 function

Robust Mixture Regression with Thresholding-Embedded EM Algorithm for Penalized Estimation

Robust Mixture Regression with Thresholding-Embedded EM Algorithm for Penalized Estimation

A robust mixture regression model that simultaneously conducts outlier detection and robust parameter estimation. It uses a sparse, case-specific, and scale-dependent mean-shift mixture model parameterization (Yu et al., 2017): [REMOVE_ME]f(yixi,θ,γi)=j=1Cπjϕ(yi;xβj+γijσj,σj2),[REMOVEME2] f(y_i|\boldsymbol{x}_i,\boldsymbol{\theta},\boldsymbol{\gamma}_i) = \sum_{j=1}^C\pi_j\phi(y_i;\boldsymbol{x}^{\top}\boldsymbol{\beta}_j+\gamma_{ij}\sigma_j,\sigma_j^2), [REMOVE_ME_2]

i=1,,ni=1,\cdots,n, where CC is the number of components in the model, θ=(π1,β1,σ1,..,πC,βC,σC)\boldsymbol{\theta}=(\pi_1,\boldsymbol{\beta}_1,\sigma_1,..,\pi_{C},\boldsymbol{\beta}_C,\sigma_C)^{\top}

is the parameter to estimate, and γi=(γi1,...,γiC)\boldsymbol{\gamma}_i=(\gamma_{i1},...,\gamma_{iC})^{\top} is a vector of mean-shift parameter for the ith observation.

mixregRM2(x, y, C = 2, ini = NULL, nstart = 20, tol = 1e-02, maxiter = 50, method = c("HARD", "SOFT"), sigma.const = 0.001, lambda = 0.001)

Arguments

  • x: an n by p data matrix where n is the number of observations and p is the number of explanatory variables. The intercept term will automatically be added to the data.
  • y: an n-dimensional vector of response variable.
  • C: number of mixture components. Default is 2.
  • ini: initial values for the parameters. Default is NULL, which obtains the initial values using the mixreg function. It can be a list with the form of list(pi, beta, sigma, gamma), where pi is a vector of C mixing proportions, beta is a C by (p + 1) matrix for regression coefficients of C components, sigma is a vector of C standard deviations, and gamma is a vector of C mean shift values.
  • nstart: number of initializations to try. Default is 20.
  • tol: stopping criteria (threshold value) for the EM algorithm. Default is 1e-02.
  • maxiter: maximum number of iterations for the EM algorithm. Default is 50.
  • method: character, determining which threshold method to use: HARD or SOFT. Default is HARD. See details.
  • sigma.const: constraint on the ratio of minimum and maximum values of sigma. Default is 0.001.
  • lambda: tuning parameter in the penalty term. It can be found based on BIC. See Yu et al. (2017) for more details.

Returns

A list containing the following elements: - pi: C-dimensional vector of estimated mixing proportions.

  • beta: C by (p + 1) matrix of estimated regression coefficients.

  • sigma: C-dimensional vector of estimated standard deviations.

  • gamma: n-dimensional vector of estimated mean shift values.

  • posterior: n by C matrix of posterior probabilities of each observation belonging to each component.

  • run: total number of iterations after convergence.

Description

A robust mixture regression model that simultaneously conducts outlier detection and robust parameter estimation. It uses a sparse, case-specific, and scale-dependent mean-shift mixture model parameterization (Yu et al., 2017):

f(yixi,θ,γi)=j=1Cπjϕ(yi;xβj+γijσj,σj2), f(y_i|\boldsymbol{x}_i,\boldsymbol{\theta},\boldsymbol{\gamma}_i) = \sum_{j=1}^C\pi_j\phi(y_i;\boldsymbol{x}^{\top}\boldsymbol{\beta}_j+\gamma_{ij}\sigma_j,\sigma_j^2),

i=1,,ni=1,\cdots,n, where CC is the number of components in the model, θ=(π1,β1,σ1,..,πC,βC,σC)\boldsymbol{\theta}=(\pi_1,\boldsymbol{\beta}_1,\sigma_1,..,\pi_{C},\boldsymbol{\beta}_C,\sigma_C)^{\top}

is the parameter to estimate, and γi=(γi1,...,γiC)\boldsymbol{\gamma}_i=(\gamma_{i1},...,\gamma_{iC})^{\top} is a vector of mean-shift parameter for the ith observation.

Details

The parameters are estimated by maximizing the corresponding penalized log-likelihood function using an EM algorithm. The thresholding rule involes the estimation of γij\gamma_{ij} corresponding to different penalty:

  • Soft threshold: γ^ij=sgn(ϵij)(ϵijλij)+)\hat{\gamma}_{ij} = sgn(\epsilon_{ij})(|\epsilon_{ij}|-\lambda_{ij}^*)_{+}), corresponding to the l1l_1 penalty.
  • Hard threshold: γ^ij=ϵijI(ϵijλij))\hat{\gamma}_{ij} = \epsilon_{ij}I(|\epsilon_{ij}|\>\lambda_{ij}^*)), corresponding to the l0l_0 penalty.

Here, ϵij=(yixiβj)/σj\epsilon_{ij} = (y_i-\boldsymbol{x}_i^{\top}\boldsymbol{\beta_j})/\sigma_j and ()+=max(,0)(\cdot)_{+}=\max(\cdot,0). Also, λij\lambda_{ij}^* is taken as λ/pij(k+1)\lambda/p_{ij}^{(k+1)} for soft threshold and λ/pij(k+1)\lambda/\sqrt{p_{ij}^{(k+1)}} for hard threshold.

Examples

data(tone) y = tone$tuned x = tone$stretchratio k = 160 x[151:k] = 0 y[151:k] = 5 est_RM2 = mixregRM2(x, y, lambda = 1)

References

Yu, C., Yao, W., and Chen, K. (2017). A new method for robust mixture regression. Canadian Journal of Statistics, 45(1), 77-94.

See Also

mixreg for initial value calculation.

  • Maintainer: Suyeon Kang
  • License: GPL (>= 2)
  • Last published: 2023-09-20

Useful links