MoLE1.0.1 package

Modeling Language Evolution

VERBS

Generate verbal lexicon

VMATCH

Compare vectors

PROCREATE

Generate new generation of agents

PRODUCE

Produce utterance

SELECTACTOR

Find actor expression

SEMUPDATE

Update lexicon

SITUATION

Create situational context

SUCCESS

Determine communicative success

SUMMARY

Summarize simulation results

TALK

Let agents talk

PROPOSITION

Develop initial proposition

WORDORDER

Use word order for interpretation

PROTOINTERPRETATION

Develop interpretation

REDUCE

Reduce length of expressions

REFCHECK

Check referential capacity

RESCALE

Rescale vector values

RUN

Run simulation

ACTOR

Determine actor role

AGENTFIRST

Actor argument first

ALLNAS

NA vector identification

ANALYZE

Determine sentence constituents

CANDIDATESCORE

Score candidate expressions

CHECKSUCCESS

Determine expected communicative success

DECOMPOSE

Decompose words into morphemes

DIE

Kill agents

EROSION

Word erosion

FIRSTINFIRSTOUT

Order constituents by activation

FIRSTSPEAKER

Create founding agent

FMATCH

Compare forms

FORMS

Generate forms

FOUND

Found population

FREQUPDATE

Update usage numbers

FUSE

Fuse words

GENERALIZE

Apply linguistic generalizations

GROUP

Group words into constituents

INTERPRET.INT

Develop an interpretation

INTERPRET

Interpret utterance

MAX

Find maximum value

MoLE-package

tools:::Rd_package_title("MoLE")

NOUNDESEMANTICIZATION

Bleach word meaning

NOUNMORPHOLOGY

Interpret nominal morphology

NOUNS

Generate nominal lexicon

PERSONUPDATE

Adjust person value

PREPARE

Prepare a proposition for production

TOPICCOPY

Make anaphoric copy of topic

TOPICFIRST

Put topic in first position

TURN

Organize communicative turn

TYPEMATCH

Determine role qualification

VERBFINAL

Put verb final

VERBMORPHOLOGY

Interpret verbal morphology

Model for simulating language evolution in terms of cultural evolution (Smith & Kirby (2008) <DOI:10.1098/rstb.2008.0145>; Deacon 1997). The focus is on the emergence of argument-marking systems (Dowty (1991) <DOI:10.1353/lan.1991.0021>, Van Valin 1999, Dryer 2002, Lestrade 2015a), i.e. noun marking (Aristar (1997) <DOI:10.1075/sl.21.2.04ari>, Lestrade (2010) <DOI:10.7282/T3ZG6R4S>), person indexing (Ariel 1999, Dahl (2000) <DOI:10.1075/fol.7.1.03dah>, Bhat 2004), and word order (Dryer 2013), but extensions are foreseen. Agents start out with a protolanguage (a language without grammar; Bickerton (1981) <DOI:10.17169/langsci.b91.109>, Jackendoff 2002, Arbib (2015) <DOI:10.1002/9781118346136.ch27>) and interact through language games (Steels 1997). Over time, grammatical constructions emerge that may or may not become obligatory (for which the tolerance principle is assumed; Yang 2016). Throughout the simulation, uniformitarianism of principles is assumed (Hopper (1987) <DOI:10.3765/bls.v13i0.1834>, Givon (1995) <DOI:10.1075/z.74>, Croft (2000), Saffran (2001) <DOI:10.1111/1467-8721.01243>, Heine & Kuteva 2007), in which maximal psychological validity is aimed at (Grice (1975) <DOI:10.1057/9780230005853_5>, Levelt 1989, Gaerdenfors 2000) and language representation is usage based (Tomasello 2003, Bybee 2010). In Lestrade (2015b) <DOI:10.15496/publikation-8640>, Lestrade (2015c) <DOI:10.1075/avt.32.08les>, and Lestrade (2016) <DOI:10.17617/2.2248195>), which reported on the results of preliminary versions, this package was announced as WDWTW (for who does what to whom), but for reasons of pronunciation and generalization the title was changed.

  • Maintainer: Sander Lestrade
  • License: GPL-2
  • Last published: 2017-10-24