MoNAn1.1.0 package

Mobility Network Analysis

addEffect

addEffect

alter_covariate

alter_covariate

associativity_all_AC_covar_bin

associativity_all_AC_covar_bin

associativity_one_AC_covar_bin

associativity_one_AC_covar_bin

autoCorrelationTest

autoCorrelationTest

avoiding_dissimilar_covar_bin

avoiding_dissimilar_covar_bin

avoiding_dissimilar_covar_cont

avoiding_dissimilar_covar_cont

concentration_AC_dyad_covar

concentration_AC_dyad_covar

concentration_AC_resource_covar_bin

concentration_AC_resource_covar_bin

concentration_AC

concentration_AC

concentration_basic_cube

concentration_basic_cube

concentration_basic_squared

concentration_basic_squared

concentration_basic

concentration_basic

concentration_GW_dyad_covar

concentration_GW_dyad_covar

concentration_GW_resource_covar_bin

concentration_GW_resource_covar_bin

concentration_GW

concentration_GW

concentration_norm_squared

concentration_norm_squared

concentration_norm

concentration_norm

concentration_prop_orig_cov

concentration_prop_orig_cov

concentration_prop

concentration_prop

concentration_rankGW

concentration_rankGW

createAlgorithm

createAlgorithm

createEdgelist

createEdgelist

createEffects

createEffects

createEffectsObject

createEffectsObject

createNetwork

createNetwork

createNodeSet

createNodeSet

createNodeVariable

createNodeVariable

createProcessState

createProcessState

createWeightedCache

createWeightedCache

crowding_out_prop_covar_bin

crowding_out_prop_covar_bin

dyadic_covariate_resource_attribute

dyadic_covariate_resource_attribute

dyadic_covariate

dyadic_covariate

estimateMobilityNetwork

estimateMobilityNetwork

extractTraces

extractTraces

getIndegree

getIndegree

getMultinomialStatistics

getMultinomialStatistics

getTieWeights

getTieWeights

gofMobilityNetwork

gofMobilityNetwork

in_ties_loops

in_ties_loops

in_weights_AC

in_weights_AC

in_weights_exponent

in_weights_exponent

in_weights_GW

in_weights_GW

joining_similar_avoiding_dissimilar_covar_bin

joining_similar_avoiding_dissimilar_covar_bin

joining_similar_avoiding_dissimilar_covar_cont

joining_similar_avoiding_dissimilar_covar_cont

loops_AC

loops_AC

loops_additional_origin

loops_additional_origin

loops_GW

loops_GW

loops_node_covar

loops_node_covar

loops_resource_covar_node_covar

loops_resource_covar_node_covar

loops_resource_covar

loops_resource_covar

loops_x_loops_additional_origin

loops_x_loops_additional_origin

loops

loops

mobilityData

Example Data for the MoNAn Package

MoNAn-package

MoNAn: Mobility Network Analysis

monanDataCreate

monanDataCreate

myOutcomeObjects

Exemplary Outcome Objects for the MoNAn Package

present_relations

present_relations

print.effectsList.monan

print.effectsList.monan

print.processState.monan

print.processState.monan

reciprocity_AC_dyad_covar_bin

reciprocity_AC_dyad_covar_bin

reciprocity_AC_dyad_covar

reciprocity_AC_dyad_covar

reciprocity_AC

reciprocity_AC

reciprocity_basic

reciprocity_basic

reciprocity_GW_dyad_covar_bin

reciprocity_GW_dyad_covar_bin

reciprocity_GW_dyad_covar

reciprocity_GW_dyad_covar

reciprocity_GW

reciprocity_GW

reciprocity_min_dyad_covar

reciprocity_min_dyad_covar

reciprocity_min_resource_covar

reciprocity_min_resource_covar

reciprocity_min

reciprocity_min

resource_covar_to_node_covar

resource_covar_to_node_covar

same_covariate

same_covariate

scoreTest

scoreTest

sim_covariate

sim_covariate

simulateMobilityNetworks

simulateMobilityNetworks

staying_by_prop_bin_inflow

staying_by_prop_bin_inflow

target_change_match

target_change_match

test_effect

test_effectTest for each person in the example data and one randomly s...

transitivity_AC

transitivity_AC

transitivity_basic

transitivity_basic

transitivity_GW

transitivity_GW

transitivity_min

transitivity_min

transitivity_netflow

transitivity_netflow

triad120C

triad120C

triad120D

triad120D

triad120U

triad120U

Implements the method to analyse weighted mobility networks or distribution networks as outlined in: Block, P., Stadtfeld, C., & Robins, G. (2022) <doi:10.1016/j.socnet.2021.08.003>. The purpose of the model is to analyse the structure of mobility, incorporating exogenous predictors pertaining to individuals and locations known from classical mobility analyses, as well as modelling emergent mobility patterns akin to structural patterns known from the statistical analysis of social networks.

  • Maintainer: Per Block
  • License: GPL (>= 3)
  • Last published: 2024-09-12