Cumulative distribution function for folded multivariate distributions
Cumulative distribution function for folded multivariate distributions
It computes the cumulative distribution function on x for a folded p-variate Normal, Skew-normal (SN), Extended Skew-normal (ESN) and Student's t-distribution.
mu: a numeric vector of length p representing the location parameter.
Sigma: a numeric positive definite matrix with dimension pxp representing the scale parameter.
lambda: a numeric vector of length p representing the skewness parameter for SN and ESN cases. If lambda == 0, the ESN/SN reduces to a normal (symmetric) distribution.
tau: It represents the extension parameter for the ESN distribution. If tau == 0, the ESN reduces to a SN distribution.
dist: represents the folded distribution to be computed. The values are normal, SN , ESN and t for the doubly truncated Normal, Skew-normal, Extended Skew-normal and Student's t-distribution respectively.
nu: It represents the degrees of freedom for the Student's t-distribution.
Details
Normal case by default, i.e., when dist is not provided. Univariate case is also considered, where Sigma will be the variance σ2.
Returns
It returns the distribution value for a single point x.
References
Galarza, C. E., Lin, T. I., Wang, W. L., & Lachos, V. H. (2021). On moments of folded and truncated multivariate Student-t distributions based on recurrence relations. Metrika, 84(6), 825-850 doi:10.1007/s00184-020-00802-1.
Galarza, C. E., Matos, L. A., Dey, D. K., & Lachos, V. H. (2022a). "On moments of folded and doubly truncated multivariate extended skew-normal distributions." Journal of Computational and Graphical Statistics, 1-11 doi:10.1080/10618600.2021.2000869.
Galarza, C. E., Matos, L. A., Castro, L. M., & Lachos, V. H. (2022b). Moments of the doubly truncated selection elliptical distributions with emphasis on the unified multivariate skew-t distribution. Journal of Multivariate Analysis, 189, 104944 doi:10.1016/j.jmva.2021.104944.