dprmvESN function

Multivariate Extended-Skew Normal Density, Probablilities and Random Deviates Generator

Multivariate Extended-Skew Normal Density, Probablilities and Random Deviates Generator

These functions provide the density function, probabilities and a random number generator for the multivariate extended-skew normal (ESN) distribution with mean vector mu, scale matrix Sigma, skewness parameter lambda and extension parameter tau.

dmvESN(x,mu=rep(0,length(lambda)),Sigma=diag(length(lambda)),lambda,tau=0) pmvESN(lower = rep(-Inf,length(lambda)),upper=rep(Inf,length(lambda)), mu = rep(0,length(lambda)),Sigma,lambda,tau,log2 = FALSE) rmvESN(n,mu=rep(0,length(lambda)),Sigma=diag(length(lambda)),lambda,tau=0)

Arguments

  • x: vector or matrix of quantiles. If x is a matrix, each row is taken to be a quantile.
  • n: number of observations.
  • lower: the vector of lower limits of length pp.
  • upper: the vector of upper limits of length pp.
  • mu: a numeric vector of length pp representing the location parameter.
  • Sigma: a numeric positive definite matrix with dimension ppxpp representing the scale parameter.
  • lambda: a numeric vector of length pp representing the skewness parameter for SN and ESN cases. If lambda == 0, the ESN/SN reduces to a normal (symmetric) distribution.
  • tau: It represents the extension parameter for the ESN distribution. If tau == 0, the ESN reduces to a SN distribution.
  • log2: a boolean variable, indicating if the log2 result should be returned. This is useful when the true probability is too small for the machine precision.

Returns

dmvESN gives the density, pmvESN gives the distribution function, and rmvESN generates random deviates for the Multivariate Extended-Skew Normal Distribution.

References

Galarza, C. E., Lin, T. I., Wang, W. L., & Lachos, V. H. (2021). On moments of folded and truncated multivariate Student-t distributions based on recurrence relations. Metrika, 84(6), 825-850 doi:10.1007/s00184-020-00802-1.

Galarza, C. E., Matos, L. A., Dey, D. K., & Lachos, V. H. (2022a). "On moments of folded and doubly truncated multivariate extended skew-normal distributions." Journal of Computational and Graphical Statistics, 1-11 doi:10.1080/10618600.2021.2000869.

Galarza, C. E., Matos, L. A., Castro, L. M., & Lachos, V. H. (2022b). Moments of the doubly truncated selection elliptical distributions with emphasis on the unified multivariate skew-t distribution. Journal of Multivariate Analysis, 189, 104944 doi:10.1016/j.jmva.2021.104944.

Galarza, C.E., Matos, L.A. and Lachos, V.H. (2022c). An EM algorithm for estimating the parameters of the multivariate skew-normal distribution with censored responses. Metron. doi:10.1007/s40300-021-00227-4.

Genz, A., (1992) "Numerical computation of multivariate normal probabilities," Journal of Computational and Graphical Statistics, 1, 141-149 doi:10.1080/10618600.1992.10477010.

Author(s)

Christian E. Galarza <cgalarza88@gmail.com > and Victor H. Lachos <hlachos@uconn.edu >

Maintainer: Christian E. Galarza <cgalarza88@gmail.com >

See Also

dmvSN, pmvSN, rmvSN, meanvarFMD,meanvarTMD,momentsTMD

Examples

#Univariate case dmvESN(x = -1,mu = 2,Sigma = 5,lambda = -2,tau = 0.5) rmvESN(n = 100,mu = 2,Sigma = 5,lambda = -2,tau = 0.5) #Multivariate case mu = c(0.1,0.2,0.3,0.4) Sigma = matrix(data = c(1,0.2,0.3,0.1,0.2,1,0.4,-0.1,0.3,0.4,1,0.2,0.1,-0.1,0.2,1), nrow = length(mu),ncol = length(mu),byrow = TRUE) lambda = c(-2,0,1,2) tau = 2 #One observation dmvESN(x = c(-2,-1,0,1),mu,Sigma,lambda,tau) rmvESN(n = 100,mu,Sigma,lambda,tau) #Many observations as matrix x = matrix(rnorm(4*10),ncol = 4,byrow = TRUE) dmvESN(x = x,mu,Sigma,lambda,tau) lower = rep(-Inf,4) upper = c(-1,0,2,5) pmvESN(lower,upper,mu,Sigma,lambda,tau)
  • Maintainer: Christian E. Galarza
  • License: GPL (>= 2)
  • Last published: 2024-10-28

Useful links