Multivariate Skew Normal Density and Probabilities and Random Deviates
Multivariate Skew Normal Density and Probabilities and Random Deviates
These functions provide the density function and a random number generator for the multivariate skew normal (SN) distribution with mean vector mu, scale matrix Sigma and skewness parameter lambda.
dmvSN(x,mu=rep(0,length(lambda)),Sigma=diag(length(lambda)),lambda)pmvSN(lower = rep(-Inf,length(lambda)),upper=rep(Inf,length(lambda)), mu = rep(0,length(lambda)),Sigma,lambda,log2 =FALSE)rmvSN(n,mu=rep(0,length(lambda)),Sigma=diag(length(lambda)),lambda)
Arguments
x: vector or matrix of quantiles. If x is a matrix, each row is taken to be a quantile.
n: number of observations.
lower: the vector of lower limits of length p.
upper: the vector of upper limits of length p.
mu: a numeric vector of length p representing the location parameter.
Sigma: a numeric positive definite matrix with dimension pxp representing the scale parameter.
lambda: a numeric vector of length p representing the skewness parameter for SN and SN cases. If lambda == 0, the SN/SN reduces to a normal (symmetric) distribution.
log2: a boolean variable, indicating if the log2 result should be returned. This is useful when the true probability is too small for the machine precision.
Returns
dmvSN gives the density, pmvSN gives the distribution function, and rmvSN generates random deviates for the Multivariate Skew-normal Distribution.
References
Galarza, C. E., Matos, L. A., Dey, D. K., & Lachos, V. H. (2022a). "On moments of folded and doubly truncated multivariate extended skew-normal distributions." Journal of Computational and Graphical Statistics, 1-11 doi:10.1080/10618600.2021.2000869.
Galarza, C. E., Matos, L. A., Castro, L. M., & Lachos, V. H. (2022b). Moments of the doubly truncated selection elliptical distributions with emphasis on the unified multivariate skew-t distribution. Journal of Multivariate Analysis, 189, 104944 doi:10.1016/j.jmva.2021.104944.
Galarza, C.E., Matos, L.A. and Lachos, V.H. (2022c). An EM algorithm for estimating the parameters of the multivariate skew-normal distribution with censored responses. Metron. doi:10.1007/s40300-021-00227-4.
Genz, A., (1992) "Numerical computation of multivariate normal probabilities," Journal of Computational and Graphical Statistics, 1, 141-149 doi:10.1080/10618600.1992.10477010.