dprmvST function

Multivariate Skew t Density, Probablilities and Random Deviates Generator

Multivariate Skew t Density, Probablilities and Random Deviates Generator

These functions provide the density function, probabilities and a random number generator for the multivariate skew t (EST) distribution with mean vector mu, scale matrix Sigma, skewness parameter lambda and degrees of freedom nu.

dmvST(x,mu=rep(0,length(lambda)),Sigma=diag(length(lambda)),lambda,nu) pmvST(lower = rep(-Inf,length(lambda)),upper=rep(Inf,length(lambda)), mu = rep(0,length(lambda)),Sigma,lambda,nu,log2 = FALSE) rmvST(n,mu=rep(0,length(lambda)),Sigma=diag(length(lambda)),lambda,nu)

Arguments

  • x: vector or matrix of quantiles. If x is a matrix, each row is taken to be a quantile.
  • n: number of observations.
  • lower: the vector of lower limits of length pp.
  • upper: the vector of upper limits of length pp.
  • mu: a numeric vector of length pp representing the location parameter.
  • Sigma: a numeric positive definite matrix with dimension ppxpp representing the scale parameter.
  • lambda: a numeric vector of length pp representing the skewness parameter for ST and EST cases. If lambda == 0, the EST/ST reduces to a t (symmetric) distribution.
  • nu: It represents the degrees of freedom of the Student's t-distribution.
  • log2: a boolean variable, indicating if the log2 result should be returned. This is useful when the true probability is too small for the machine precision.

Returns

dmvST gives the density, pmvST gives the distribution function, and rmvST generates random deviates for the Multivariate Skew-tt Distribution.

References

Galarza, C. E., Lin, T. I., Wang, W. L., & Lachos, V. H. (2021). On moments of folded and truncated multivariate Student-t distributions based on recurrence relations. Metrika, 84(6), 825-850 doi:10.1007/s00184-020-00802-1.

Galarza, C. E., Matos, L. A., Dey, D. K., & Lachos, V. H. (2022a). "On moments of folded and doubly truncated multivariate extended skew-normal distributions." Journal of Computational and Graphical Statistics, 1-11 doi:10.1080/10618600.2021.2000869.

Galarza, C. E., Matos, L. A., Castro, L. M., & Lachos, V. H. (2022b). Moments of the doubly truncated selection elliptical distributions with emphasis on the unified multivariate skew-t distribution. Journal of Multivariate Analysis, 189, 104944 doi:10.1016/j.jmva.2021.104944.

Genz, A., (1992) "Numerical computation of multivariate normal probabilities," Journal of Computational and Graphical Statistics, 1, 141-149 doi:10.1080/10618600.1992.10477010.

Author(s)

Christian E. Galarza <cgalarza88@gmail.com > and Victor H. Lachos <hlachos@uconn.edu >

Maintainer: Christian E. Galarza <cgalarza88@gmail.com >

See Also

dmvST, pmvST, rmvST, meanvarFMD,meanvarTMD,momentsTMD

Examples

#Univariate case dmvST(x = -1,mu = 2,Sigma = 5,lambda = -2,nu=4) rmvST(n = 100,mu = 2,Sigma = 5,lambda = -2,nu=4) #Multivariate case mu = c(0.1,0.2,0.3,0.4) Sigma = matrix(data = c(1,0.2,0.3,0.1,0.2,1,0.4,-0.1,0.3,0.4,1,0.2,0.1,-0.1,0.2,1), nrow = length(mu),ncol = length(mu),byrow = TRUE) lambda = c(-2,0,1,2) #One observation dmvST(x = c(-2,-1,0,1),mu,Sigma,lambda,nu=4) rmvST(n = 100,mu,Sigma,lambda,nu=4) #Many observations as matrix x = matrix(rnorm(4*10),ncol = 4,byrow = TRUE) dmvST(x = x,mu,Sigma,lambda,nu=4) lower = rep(-Inf,4) upper = c(-1,0,2,5) pmvST(lower,upper,mu,Sigma,lambda,nu=4)
  • Maintainer: Christian E. Galarza
  • License: GPL (>= 2)
  • Last published: 2024-10-28

Useful links