momentsFMD function

Moments for folded multivariate distributions

Moments for folded multivariate distributions

It computes the kappa-th order moments for the folded p-variate Normal, Skew-normal (SN), Extended Skew-normal (ESN) and Student's t-distribution. It also output other lower moments involved in the recurrence approach.

momentsFMD(kappa,mu,Sigma,lambda = NULL,tau = NULL,nu = NULL,dist)

Arguments

  • kappa: moments vector of length pp. All its elements must be integers greater or equal to 00. For the Student's-t case, kappa can be a scalar representing the order of the moment.
  • mu: a numeric vector of length pp representing the location parameter.
  • Sigma: a numeric positive definite matrix with dimension ppxpp representing the scale parameter.
  • lambda: a numeric vector of length pp representing the skewness parameter for SN and ESN cases. If lambda == 0, the ESN/SN reduces to a normal (symmetric) distribution.
  • tau: It represents the extension parameter for the ESN distribution. If tau == 0, the ESN reduces to a SN distribution.
  • nu: It represents the degrees of freedom for the Student's t-distribution. Must be an integer greater than 1.
  • dist: represents the folded distribution to be computed. The values are normal, SN , ESN and t for the doubly truncated Normal, Skew-normal, Extended Skew-normal and Student's t-distribution respectively.

Details

Univariate case is also considered, where Sigma will be the variance σ2\sigma^2.

Returns

A data frame containing p+1p+1 columns. The pp first containing the set of combinations of exponents summing up to kappa and the last column containing the the expected value. Normal cases (ESN, SN and normal) return prod(kappa)+1 moments while the Student's t-distribution case returns all moments of order up to kappa. See example section.

References

Galarza, C. E., Lin, T. I., Wang, W. L., & Lachos, V. H. (2021). On moments of folded and truncated multivariate Student-t distributions based on recurrence relations. Metrika, 84(6), 825-850 doi:10.1007/s00184-020-00802-1.

Galarza, C. E., Matos, L. A., Dey, D. K., & Lachos, V. H. (2022a). "On moments of folded and doubly truncated multivariate extended skew-normal distributions." Journal of Computational and Graphical Statistics, 1-11 doi:10.1080/10618600.2021.2000869.

Galarza, C. E., Matos, L. A., Castro, L. M., & Lachos, V. H. (2022b). Moments of the doubly truncated selection elliptical distributions with emphasis on the unified multivariate skew-t distribution. Journal of Multivariate Analysis, 189, 104944 doi:10.1016/j.jmva.2021.104944.

Author(s)

Christian E. Galarza <cgalarza88@gmail.com > and Victor H. Lachos <hlachos@uconn.edu >

Maintainer: Christian E. Galarza <cgalarza88@gmail.com >

Note

Degrees of freedom must be a positive integer. If nu >= 300, Normal case is considered."

Warning

For the Student-t cases, including ST and EST, kappa-thth order moments exist only for kappa < nu.

See Also

meanvarFMD, onlymeanTMD,meanvarTMD,momentsTMD, dmvSN,pmvSN,rmvSN, dmvESN,pmvESN,rmvESN, dmvST,pmvST,rmvST, dmvEST,pmvEST,rmvEST

Examples

mu = c(0.1,0.2,0.3) Sigma = matrix(data = c(1,0.2,0.3,0.2,1,0.4,0.3,0.4,1), nrow = length(mu),ncol = length(mu),byrow = TRUE) value1 = momentsFMD(c(2,0,1),mu,Sigma,dist="normal") value2 = momentsFMD(3,mu,Sigma,dist = "t",nu = 7) value3 = momentsFMD(c(2,0,1),mu,Sigma,lambda = c(-2,0,1),dist = "SN") value4 = momentsFMD(c(2,0,1),mu,Sigma,lambda = c(-2,0,1),tau = 1,dist = "ESN") #T case with kappa vector input value5 = momentsFMD(c(2,0,1),mu,Sigma,dist = "t",nu = 7)
  • Maintainer: Christian E. Galarza
  • License: GPL (>= 2)
  • Last published: 2024-10-28

Useful links