Bias_Correc_VAR function

Estimates an unbiased VAR(1) using stochastic approximation (Bauer, Rudebusch and Wu, 2012)

Estimates an unbiased VAR(1) using stochastic approximation (Bauer, Rudebusch and Wu, 2012)

Bias_Correc_VAR( ModelType, BRWinputs, RiskFactors, N, Economies, FactorLabels, GVARinputs = NULL, JLLinputs = NULL, ev_restr = 1, nargout = 4 )

Arguments

  • ModelType: A character vector indicating the model type to be estimated.

  • BRWinputs: A list containing the necessary inputs for the BRW model estimation:

    1. flag_mean: Logical. Determines whether mean- (TRUE) or median- (FALSE) unbiased estimation is desired. Default is TRUE.
    2. gamma: Numeric. Adjustment parameter between 0 and 1. Default is 0.5.
    3. N_iter: Integer. Number of iterations for the stochastic approximation algorithm after burn-in. Default is 5,000.
    4. N_burn: Integer. Number of burn-in iterations. Default is 15
    5. B: Integer. Number of bootstrap samples per iteration for calculating the noisy measure of the OLS estimator's mean or median. Default is 50.
    6. check: Logical. Indicates whether to perform a closeness check. Default is TRUE.
    7. B_check: Integer. Number of bootstrap samples for the closeness check. Default is 100,000.
  • RiskFactors: A numeric matrix (T x F) representing the time series of risk factors.

  • N: Integer. Number of country-specific spanned factors.

  • Economies: A character vector containing the names of the economies included in the system.

  • FactorLabels: A list of character vectors with labels for all variables in the model.

  • GVARinputs: List. Inputs for GVAR model estimation (see GVAR function). Default is NULL.

  • JLLinputs: List. Inputs for JLL model estimation (see JLL function). Default is NULL.

  • ev_restr: Numeric. Restriction on the largest eigenvalue under the P-measure. Default is 1.

  • nargout: Integer. Number of elements in the output list. Default is 4.

Returns

Bias-corrected VAR parameters based on the framework of Bauer, Rudebusch and Wu (2012). The list contains:

  1. Phi_tilde: estimated coefficient matrix (F x F);
  2. mu_tilde: estimated intercept (F x 1);
  3. V_tilde: estimated variance-covariance matrix (F x F);
  4. dist: root mean square distance (scalar);
  5. Phi_sample: sample estimated variance-covariance matrix used in the checks (F x F x B_check) - this output is reported if nargout is 5.

Examples

data(CM_Factors) Factors <- t(RiskFactors[1:7,]) BRWinputs <- list(flag_mean = TRUE, gamma = 0.4, N_iter = 1000, N_burn = 100, B = 10, check = 1, B_check = 5000) Economies <- "China" N <- 3 ModelType <- "JPS original" FactorLabels <- NULL BRWpara <- Bias_Correc_VAR(ModelType, BRWinputs, Factors, N, Economies, FactorLabels)

References

Bauer, Rudebusch and, Wu (2012). "Correcting Estimation Bias in Dynamic Term Structure Models"

This function is based on the est_unb_var Matlab function available at Cynthia Wu's website (https://sites.google.com/view/jingcynthiawu/).

  • Maintainer: Rubens Moura
  • License: GPL-2 | GPL-3
  • Last published: 2025-03-24