SIR_prob function

Transition probabilities of an SIR process

Transition probabilities of an SIR process

Computes the transition pobabilities of an SIR process using the bivariate birth process representation

SIR_prob(t, alpha, beta, S0, I0, nSI, nIR, direction = c("Forward", "Backward"), nblocks = 20, tol = 1e-12, computeMode = 0, nThreads = 4)

Arguments

  • t: time
  • alpha: removal rate
  • beta: infection rate
  • S0: initial susceptible population
  • I0: initial infectious population
  • nSI: number of infection events
  • nIR: number of removal events
  • direction: direction of the transition probabilities (either Forward or Backward)
  • nblocks: number of blocks
  • tol: tolerance
  • computeMode: computation mode
  • nThreads: number of threads

Returns

a matrix of the transition probabilities

Examples

data(Eyam) loglik_sir <- function(param, data) { alpha <- exp(param[1]) # Rates must be non-negative beta <- exp(param[2]) if(length(unique(rowSums(data[, c("S", "I", "R")]))) > 1) { stop ("Please make sure the data conform with a closed population") } sum(sapply(1:(nrow(data) - 1), # Sum across all time steps k function(k) { log( SIR_prob( # Compute the forward transition probability matrix t = data$time[k + 1] - data$time[k], # Time increment alpha = alpha, beta = beta, S0 = data$S[k], I0 = data$I[k], # From: R(t_k), I(t_k) nSI = data$S[k] - data$S[k + 1], nIR = data$R[k + 1] - data$R[k], computeMode = 4, nblocks = 80 # Compute using 4 threads )[data$S[k] - data$S[k + 1] + 1, data$R[k + 1] - data$R[k] + 1] # To: R(t_(k+1)), I(t_(k+1)) ) })) } loglik_sir(log(c(3.204, 0.019)), Eyam) # Evaluate at mode
  • Maintainer: Marc A. Suchard
  • License: Apache License 2.0
  • Last published: 2016-12-05

Useful links